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BLUF: Probabilistic Programming for Fusion

 Fusion systems take sensor and data inputs and perform useful  reasoning 
with them
 Predict future events
 Infer current situation that led to observations
 Learn how to predict and infer better
 Probabilistic reasoning can do all these things
 But with difficulty for all but the simplest models

Probabilistic programming makes it possible to develop
probabilistic applications with much less effort and expertise

(for fusion applications and beyond)
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Overview

1) What is Probabilistic Programming?

2) Probabilistic Programming in Action

3) Probabilistic Programming Inference 
Algorithms

4) Probabilistic Programming for Long-
Lived AI Systems



What is Probabilistic 
Programming?
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The Gist of Probabilistic Reasoning
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Probabilistic Reasoning: Predicting the Future
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Probabilistic Reasoning: Inferring Factors that Caused Observations
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Probabilistic Reasoning: Using the Past to Predict the  Future
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Probabilistic Reasoning: Learning from the Past
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But Probabilistic Reasoning Is Hard!
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You need to
 Implement the representation
 Implement the probabilistic inference algorithm
 Implement the learning algorithm
 Interact with data
 Integrate with an application
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One Approach: Bayesian Networks

 Implement the representation
 Bayesian networks
 Implement the probabilistic inference algorithm
 Standard BN inference algorithms
 Implement the learning algorithm
 Standard BN learning algorithms
 Interact with data
 Use a package that supplies ability to read and store data
 Integrate with an application
 Use a package’s API

Keynote Presentation at the 22nd International Conference on Information Fusion (Fusion 2019), Ottawa, Canada (July 2019)11



Limitations of this Approach

 Bayesian network models are flat and unstructured
 Bayesian networks have a fixed set of variables
 Variables have simple types
 Many applications do not satisfy these limitations
 Models have natural structure that should be captured
 Changing number of objects
 Variables with structured and complex types
 E.g., sequences, trees, graphs

 Before probabilistic programming, researchers invented  representations 
for each individual application
We want to make using probabilistic models for more complex  

applications as easy as Bayesian networks
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Drastically reduce the work to create  
probabilistic reasoning applications

Expand the range of probabilistic  
applications that can be created

Goals of Probabilistic Programming
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How Probabilistic Programming Achieves This

1. Expressive programming language for representing models
2. General-purpose inference and learning algorithms apply to  models 

written in the language

All you have to do is represent the model in code and you  automatically get 
the application
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tallCenterForward = true  

accurateCross = true

goodHeader = tallCenterForward && accurateCross  

goodGoalie = false

goal = goodHeader && !goodGoalie

Basic Programming Concept: Functional Programming

 Non-probabilistic functional programming language: an  expression 
describes a computation that produces a value
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Functional Probabilistic Programming

 Probabilistic Functional programming language: an expression  describes 
a random computation that produces a value
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tallCenterForward = flip(0.3)  

accurateCross = flip(0.5)  

goodHeader =

if (tallCenterForward && accurateCross) flip(0.8)  

else flip(0.1)

goodGoalie = flip(0.6)  

goal =

if (goodHeader && !goodGoalie) flip(0.7)

else flip(0.3)
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Sampling Semantics

 We imagine running the program many times
 Each run generates a value for each of the variables

 This process defines a joint probability distribution over all the  variables
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Variable Sample 1 Sample 2 Sample 3 Sample 4

Tall center forward True False False False
Accurate cross False True True False
Good header True False False True
Good goalie True True True False
Goal False False False True
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Probabilistic Program Inference Tasks

 Probability computation
 Given observations about some variables (e.g. tallCenterForward)
 Compute probability of values of other variables (e.g. Goal)
 Most probable explanation
 Given observations about some variables
 Compute most likely state of other variables
 Probability of evidence
 Given observations about some variables
 Compute probability of those observations
 Many different inference algorithms used
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Probabilistic Programming Languages (PPLs)

 Most PPLs describe sampling process in a similar manner
 Variations:
 Kinds of variables supported
 E.g., discrete, continuous, or mixed
 Kinds of models supported
 E.g., finite structure vs infinitely recursive
 Integration with ordinary programming language
 E.g., library in host language vs separate language
 Inference tasks supported
 Algorithms used
 Programming styles
 Functional
 Object-oriented
 Logic
 Imperative
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Probabilistic Programming 
in Action
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My Probabilistic Programming Languages

 1997: Stochastic Lisp [Koller, McAllester, & Pfeffer 97]
 First functional PPL and algorithm
 Mainly theoretical
 2001-2009: Integrated Bayesian Agent Language (IBAL)
 First practical functional PPL [Pfeffer 01, 07]
 Some interesting algorithms
 But limited in its expressivity, algorithms, and integration
 2009-2018: Figaro [Pfeffer 12, 16]
 Object-oriented and functional
 Highly expressive
 Many algorithms
 Easy to integrate with data and applications
 Implemented as a Scala library
 2018-: Scruff [Pfeffer & Lynn, 18]
 Designed for long-lived AI applications
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val tallCenterForward = Flip(0.3)  

val accurateCross = Flip(0.5)

val goodHeader =

If(tallCenterForward && accurateCross,  

Flip(0.8), Flip(0.1))

val goodGoalie = Flip(0.6)  

val goal =

If(goodHeader && !goodGoalie,

Flip(0.7), Flip(0.3))

println(VariableElimination.probability(goal, true))

Our Example Program in Figaro
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Figaro Language Concepts (1)

 Apply
 Applies a function to a random variable that creates another random  

variable
 Apply(Uniform(0, 1), x => x * 2)
 Example: Centrality of a probabilistic graph

 Chain
 Creates a new random variable that depends on the value of  another 

random variable
 Chain(Uniform(0, 1), x => Normal(x, 1))
 Example: Random walk on a probabilistic graph
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Figaro Language Concepts (2)

 Condition
 Asserts that a variable must have a certain property
 Uniform(0, 1).addCondition(x => x > 0.5)
 Flip(0.7).observe(true)
 Example: Observing that a probabilistic graph has 26 nodes

 Constraint
 Provides a weighting function for the values of a variable
 Uniform(0, 1).addConstraint(x => x)
 Example: Asserting that nodes in a probabilistic graph tend to have  

fewer edges
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Figaro Applications

 Over the last 10 years, we’ve created a large number of  applications of 
Figaro
 I’ll show you some representative examples to illustrate the  sorts of things 

you can do with probabilistic programming
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Figaro novices were able to quickly build up an  
integrated probabilistic reasoning application

Hydrological Terrain Modeling for Army Logistics (TIDE)

Keynote Presentation at the 22nd International Conference on Information Fusion (Fusion 2019), Ottawa, Canada (July 2019)26



We were able to perform a sophisticated analysis far  better 
than our previous non-probabilistic method

Malware Lineage (DARPA Cyber Genome)
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Tracklet Merging (DARPA PPAML Challenge Problem)
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We came up with a new algorithm that  we 
would not have thought of without  probabilistic 

programming and  expressed it in one slide
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class Tracklet(
toCandidates: List[(Double, Tracklet)],  
fromCandidates: List[(Double, Tracklet)]

){
val next = Select(toCandidates: _*)
val previous = Select(fromCandidates: _*)

}

for (source <- sources) {  
val nextPrevious =
Chain(source.next,

nextTracklet => nextTracklet.previous)  
nextPrevious.observe(source)

}

Tracklet Merging in Figaro
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Workflow Activity Recognition (DARPA PPAML)
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Problem

Given a sequence of desktop user events, determine the correct workflow,  
instance, and position of each event

Challenge: Workflows are interleaved!

Based on DARPA PAL program, which turned into Siri
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Figaro Model

 Maintain a set of active workflows
 At each time point, the user can
 Continue the current workflow
 Switch to another active workflow
 Start a new workflow
 Inference uses particle filtering
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Workflow Identification Results

 3rd-party evaluation:
 Instrumented Windows desktop events
 E.g., send email, open Word file, open URL
 Six workflows
 E.g., review document, compile report

 Results
 Over 70% of interleaved workflows correct
 Over 80% of non-interleaved workflow correct

 The method from PAL got less than 50% and did not work with  interleaved 
workflows
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Some Other Fusion-Related Applications at Charles River

 Management of uncertainty in  fusion for missile 
defense
 Hierarchical reasoning for space  object 

classification
 Monitoring and predicting health of  engineered 

systems
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Probabilistic Programming 
Inference Algorithms
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Probabilistic Program Inference Tasks

 Probability computation
 Given observations about some variables (e.g., tallCenterForward)
 Compute probability of values of other variables (e.g., Goal)
 Most probable explanation
 Given observations about some variables
 Compute most likely state of other variables
 Probability of evidence
 Given observations about some variables
 Compute probability of those observations
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Algorithm Families

 Most probabilistic programming algorithms are generalizations  of 
graphical models algorithms
 Sampling algorithms
 Generate samples from the probability distribution
 Compute statistics over those samples
 Factored algorithms
 Represent model using tables called factors
 Algorithms perform algebraic operations on factors
 Amortized inference
 Run expensive, one-off compilation to produce fast inference model
 Typically train a neural network to do inference with data generated  from 

the probabilistic model
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Sampling Algorithms: Rejection Sampling

 Generate samples from the program
 Delete the samples that disagree with the evidence
 Compute statistics on the remaining samples
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Variable Sample 1 Sample 2 Sample 3 Sam ple 4

Tall center forward True False False Fals e
Accurate cross False True True Fals e
Good header True False False Tru e
Good goalie True True True Fals e
Goal False False False Tru e

P(accurate cross) = 2/3

Given our example corner kick program
With the observation that a goal was not scored
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Sampling Algorithms: Importance Sampling

 Similar to rejection sampling, but instead of crossing out  samples, weights 
samples by how much they agree with the  evidence
Works with soft evidence
 Allows lookahead to avoid rejections
 Variant: Sequential Monte Carlo
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Variable ¾ ¾ ¾ ¼

Tall center forward True False False False
Accurate cross False True True False
Good header True False False True
Good goalie True True True False
Goal False False False True

P(accurate cross) = (¾ + ¾) / (¾ + ¾ + ¾ + ¼)

Soft evidence: goalie is 3 times more likely to be good
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Sampling Algorithms: Markov Chain Monte Carlo

 Repeatedly change the state of the system using some random  process
 Every so often, collect a sample
 Variants
 Gibbs sampling
 Metropolis-Hastings
 Hamiltonian Monte Carlo
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Variable

Tall center forward True True False False
Accurate cross False True True False
Good header True True True True
Good goalie True True True True
Goal False False False False
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Factored Algorithms

 Expresses computation as sum-of-products

P(good-goalie = True, goal = True) =

Σtcf ΣacΣgh
P(tall-center-forward = tcf)
P(accurate-cross = ac)
P(good-header = gh | tall-center-forward = tcf, accurate-cross = hc)  
P(good-goalie = True)

P(goal = True | good-header = gh, good-goalie = True)
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 Factored algorithms primarily work with discrete problems, but  can be 
faster and more accurate than sampling algorithms
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Factored Algorithms: Variable Elimination

 Rearranges computation of sums of products for maximum  efficiency
 Produces exact answer!
 Complexity exponential in a derived property of the graph  describing the 

computation
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Factored Algorithms: Belief Propagation

 Solve computation by message-passing
 Exact for programs without loops
 Runs in linear time in size of model
With loops, generally gives good answers, but no guarantees of  

convergence or accuracy
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Two Big Issues for Probabilistic Program Inference

1. Probabilistic programming models can define a very large or  infinite 
number of variables
 Can’t generate samples or create factor graph

2. We want to create an easy to use framework for building  probabilistic 
applications, but there are so many algorithms to  choose from and 
configure
 Barrier to entry for non-ML expert users
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Very Large Models: Lazy Inference [Pfeffer et al. 15]

 Expand only the most relevant parts of the model
 Quantify the effect of the unexpanded part on the query
 Use this to provide bounds on the answer
 Refine as desired to improve the bounds
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Lazy Inference: Unbounded But Finite Grammar

 Grammar generates sentences of any length
 Query is whether the sentence contains a specific subsentence
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Lazy inference provides accurate answers on infinite models
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Lazy Inference: Infinite Grammar

 Grammar generates infinite sentence with positive probability!
 No sampling or non-lazy method can produce any answer
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Lazy inference can answer queries no other method can
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Automatic Optimization: Structured Factored Inference  
(SFI) [Pfeffer et al. 18]

 A method to automatically decompose a probabilistic program  and 
optimize each part independently
 Analogous to database query optimization
 Step 1: Decompose inference and use dynamic programming
 Step 2: Optimize each subproblem separately
 Two major advantages of this approach
 It’s much easier to decide what algorithm to use on a small  subproblem 

than a large problem
We get to use different algorithms for different subproblems
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Automatic Optimization: Medical Diagnosis Problem

 Based on QMR-DT benchmark
 Complexity of exact inference grows exponentially with problem size
 VE = variable elimination, BP = belief propagation
 VE/BP is SFI algorithm that automatically chooses between them
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Probabilistic Programming 
for Long-Lived AI Systems
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What do I Mean by Long-Lived AI?

 Agents interact with their environment through sensors and  actuators
 Long-running interactions throughout the lifetime of the AI  system
 Open-ended environments of particular interest

 Note: Long-lived AI does not necessarily imply physical robots
 Examples:
 Chatbot conversing on open-ended series of topics
 Virtual scientist formulating hypotheses, designing experiments, and  

developing theories
 And of course, the household robot taking care of our various needs
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Deep Q Learning for Long-Lived AI

 Impressive results, but some limitations:
 Extremely data hungry
 Huge number of interactions required in simulated environment
 Limited capacity to transfer
 E.g., Kansky et al., 2017: System trained on Breakout fails on minor  

variants of game
 Cannot distinguish causation from correlation
 Struggles with open-ended inference that requires information  outside the 

specific input
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Beyond Deep Learning

 Neural networks are bottom-up data structures
 If we could combine top-down knowledge with bottom-up  sensor 

processing, maybe we can do better
 Useful knowledge can make systems less data-hungry
 General world knowledge can help transfer
 Knowledge can explicitly model causal relationships
 Open-ended world knowledge can be brought to bear

But we must not lose deep learning’s ability to learn  complex 
functions that can’t be programmed!
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An Assist from Cognitive Science: Predictive Processing

 Traditionally:
 Brain encodes sensory stimuli as they occur
 Beliefs and concepts are result of perception
 Predictive processing (Friston, Hohwy, Clark, Rao & Ballard):
 Beliefs about world yield predictions about sensory signals
 Sensory cortex encodes prediction error
 Perception results from combination of prediction and error
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Introducing Scruff [Pfeffer & Lynn 18]

 A new probabilistic programming framework based on  predictive 
processing
 Unlike traditional probabilistic programming, Scruff models are  

hierarchical networks with many layers of nodes
 Each node is represented by a probabilistic program
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Scruff

 Bayesian models fit predictive processing well
 Prediction = prior
 Errors = likelihoods
 Percepts = posterior
 Scruff lets us express prior domain knowledge using programs
 Take observations and reconcile with predictions to form  posterior beliefs
 Programs let us work with more interesting data structures  than just 

enumerated or continuous random variables
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Hierarchical Representations

 Layer functions
 Vector of nodes provide distributed encoding like neural net
 Individual node conditional probabilities structured using  programming 

language facilities
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Higher layers provide: abstraction, aggregation, context  Lower 
layers provide: specialization, decomposition
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Example Hierarchy: Monitoring Vehicles
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Modeling Different Time Rates

 Each variable takes a time argument
 State of layer depends on previous state of same layer and  current state 

of parent layer
 Time deltas can be customized for each layer
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Goal of Monitoring and Learning

 Estimate the state of the system over time
 Each node maintains beliefs about its state
 Represented as probabilities of different hypotheses
 Nodes update asynchronously at the appropriate rate
 Predict future developments
 From the current state estimate, envision probable futures
 Learn to improve the system
 Bayesian update
 Gradient descent
 Abductive hypothesis generation
 Goal is to develop a distributed, real-time system
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Inference by Asynchronous Belief Propagation

 π messages encode predictions from parents
 λ messages encode likelihoods from children
 δ messages encode drift from same node at previous time
 Nodes update asynchronously based on most recent messages
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Examples of Surprise and Adaptation (Planned)

 Case 1: Ordinary sensor noise
 Truck moving at 100kph
 Sensors provide noisy and intermittent observations
 Scruff interprets this as a normal situation of truck maintaining 100kph

 Case 2: Surprising, but intermittent, sensor reading
 Truck moving at 100kph, with momentary 120kph sensor reading
 Scruff interprets this as sensor fault
 Truck still held to be traveling at 100kph

 Case 3: Truck goes faster
 Sensor gradually shifts from 100kph to 180kph
 180kph is faster than previously believed max speed of the truck
 Scruff modifies the movement capability of the truck

 Case 4: Truck goes unbelievably fast
 Sensor increases to 250kph
 This is faster than any believed speed for a truck
 Scruff maintains two hypotheses
 Vehicle class is different – truck is disguise
 Sensor is biased – but this is refuted by sensor reading of other vehicles
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Status

We’ve built a proof-of-concept demo of Scruff for a simple  scenario
We’re now working on a robust, scalable implementation
We plan to make it easy to use, with extensive representation,  control, 

and reporting options
We intend to make it open source

 Please send me an email if you would like to be notified when  the first 
public version is available
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Conclusion

 Probabilistic programming makes it easier to develop  applications to 
predict, infer, and learn for fusion and beyond
 Probabilistic programming languages are maturing and have a  wide 

variety of applications
 Significant improvements have been made in probabilistic  program 

inference in the last few years
 Scruff shows the way to a future of probabilistic programming  as the basis 

for AI systems that interact with the environment  over a long period of time
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More Information

 Figaro is open source
 Contributions welcome!
 Releases can be downloaded from 

www.cra.com/figaro
 Figaro source is on GitHub at 

https://github.com/charles-river-
analytics/figaro

 Charles River Analytics is hiring
 Employee-owned company
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Contact information: apfeffer@cra.com
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