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1
I N T R O D U C T I O N

1.1 what is figaro?

Reasoning under uncertainty requires taking what you know and in-
ferring what you don’t know, when what you know doesn’t tell you
for sure what you don’t know. A well established approach for reason-
ing under uncertainty is probabilistic reasoning. Typically, you create
a probabilistic model over all the variables you’re interested in, ob-
serve the values of some variables, and query others. There is a huge
variety of probabilistic models, and new ones are being developed
constantly. Figaro is designed to help build and reason with the wide
range of probabilistic models.

Developing a new probabilistic model normally requires develop-
ing a representation for the model and a reasoning algorithm that
can draw useful conclusions from evidence, and in many cases also
an algorithm to learn aspects of the model from data. These can be
challenging tasks, making probabilistic reasoning require significant
effort and expertise. Furthermore, most probabilistic reasoning tools
are standalone and difficult to integrate into larger programs.

Figaro is a probabilistic programming language that helps address
both these issues. Figaro makes it possible to express probabilistic
models using the power of programming languages, giving the mod-
eler the expressive tools to create all sorts of models. Figaro comes
with a number of built-in reasoning algorithms that can be applied
automatically to new models. In addition, Figaro models are data
structures in the Scala programming language, which is interopera-
ble with Java, and can be constructed, manipulated, and used directly
within any Scala or Java program.

Figaro is extremely expressive. It can represent a wide variety of
models, including:

• Directed and undirected models

• Models in which conditions and constraints are expressed by
arbitrary Scala functions

• Models involving inter-related objects

• Open universe models in which we don’t know what or how
many objects exist

• Models involving discrete and continuous elements

• Models in which the elements are rich data structures such as
trees

1



1.2 this tutorial 2

• Models with structured decisions

• Models with unknown parameters

Figaro provides a rich library of constructs to build these models,
and provides ways to extend this library to create your own model
elements.

Figaro’s library of reasoning algorithms is also extensible. Current
built-in algorithms include:

• Exact inference using variable elimination

• Belief propagation

• Lazy factored inference for infinite models

• Importance sampling

• Metropolis-Hastings, with an expressive language to define pro-
posal distributions

• Support computation

• Most probable explanation (MPE) using variable elimination,
belief propagation, or simulated annealing

• Probability of evidence using importance sampling, belief prop-
agation, variable elimination, and particle filtering

• Particle filtering

• Factored frontier

• Gibbs sampling

• Parameter learning using expectation maximization

Figaro provides both regular (the algorithm is run once) and any-
time (the algorithm is run until stopped) versions of some of these
algorithms. In addition to the built-in algorithms, Figaro provides a
number of tools for creating your own reasoning algorithms.

Figaro is free and is released under an open-source license (see
license file). The public code repository for Figaro can also be found
at https://github.com/p2t2.

1.2 this tutorial

This tutorial is a guide to using Figaro. Figaro is a probabilistic pro-
gramming language, meaning that it can be used to create proba-
bilistic models by writing programs in a programming language. In
Figaro’s case, the underlying programming language is Scala. Scala
combines object-oriented and functional programming styles and is

https://github.com/p2t2
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interoperable with Java, so a Figaro program can be used within a
Java program directly.

To be precise, Figaro is a Scala library. It defines rich data structures
for probabilistic models and reasoning algorithms for reasoning with
those models. Because these are Scala data structures, Figaro models
can be created using the full power of Scala. These three things are
the key to Figaro: the ability to represent an extremely large and in-
teresting class of probabilistic models using these data structures; the
ability to use a reasoning algorithm on these data structures to draw
conclusions about the probabilistic model; and the ability to create
and manipulate the data structures using Scala. This means that any
function, data structure or operation in Scala or Java be incorporated
into a Figaro model, giving the user many powerful tools for building
probabilistic models.

Figaro is also extensible. It is easy to create new kinds of data struc-
tures in the library, and, while developing new algorithms is a more
complex task, Figaro also provides the means to develop new algo-
rithms for the library.

This tutorial assumes some basic knowledge of probabilistic model-
ing and inference to derive the maximum benefit from it. Also, while
this tutorial is not an introduction to Scala, it will explain some Scala
constructs as it goes along, so that the reader can make basic use of
Figaro after reading the tutorial. However, to get the full benefit of Fi-
garo, it is recommended that the reader learn some Scala. This could
prove well worth the reader’s while, because Scala is a language that
combines elegance and practicality in a useful way. "Programming in
Scala" by Martin Odersky is available for free online.

The tutorial is not a complete and comprehensive guide to all of
Figaro’s features. The official reference is the Scaladoc, which doc-
uments Figaro’s methods. For a broader introduction to probabilis-
tic programming and Figaro, see "Practical Probabilistic Program-
ming" by Avi Pfeffer, published by Manning (http://www.manning.
com/pfeffer/).

After presenting a "Hello world!" example, the tutorial will begin
with a discussion of Figaro’s representation, i.e. the data structures
that underlie the probabilistic models. Next, it will give examples
using Scala of creating Figaro models. It will then describe how to
use the built-in reasoning algorithms, including a brief discussion of
probabilistic programming for dynamic models, decision networks,
parameter learning and hierarchical reasoning. The last two sections
of the tutorial are geared towards users who want to extend Figaro,
first describing how to create new modeling data structures and then
describing how to create new algorithms. All of the code for the exam-
ples presented in this tutorial can be found with the set of examples
distributed with Figaro.

http://www.manning.com/pfeffer/
http://www.manning.com/pfeffer/
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1.3 installation

Please see the Quick Start Guide for instructions on installing Figaro.
There are several ways to use Figaro, including just using the binary
distribution or compiling from the source code.

Figaro is maintained as open source on GitHub. The GitHub project
is Probabilistic Programming Tools and Techniques (P2T2), located at
https://github.com/p2t2. If you want to see the source code and
build Figaro yourself, please visit our GitHub site. We welcome con-
tributions from the community.

https://github.com/p2t2


2
H E L L O W O R L D !

Make sure Scala version 2.11.4 or later is installed on your machine.
Follow the instructions to either extract the Figaro jar to some location
or build the jar from the code repository. Change the directory to that
location and enter the line below in the command prompt:

scala −classpath "figaro.jar;$CLASSPATH"

This starts the Scala interactive console and makes sure all the Fi-
garo classes are available. The interactive console reads one line of
Scala code at a time and interprets it. It is useful for learning and try-
ing new things. Ordinarily, you would use the compiler to compile a
program into Java byte code and run it. To use the Scala compiler, use
the scalac or fsc command, again making sure the Figaro.jar is in
the class path.

Once in the interactive console, at the Scala prompt, enter:

import com.cra.figaro.language._

This loads the portion of the Figaro package that allows you to cre-
ate models using the core language. Now we’ll create a probabilistic
model and give it a name:

val hw = Constant("Hello world!")

This line creates a field hw whose value is the probabilistic model
that produces the string "Hello world!" with probability 1.0. To exer-
cise the model, we need to create an instance of an algorithm. We’ll
use an importance sampling algorithm. First we need to import the
algorithm’s definition:

import com.cra.figaro.algorithm.sampling._

Now we create the algorithm, telling it that the target model is hw:

val alg = Importance(1000, hw)

The 1000 tells the sampler to take 1000 samples. Before we can
query the algorithm for an answer, we have to tell it to start running:

alg.start()

We can now ask for the probability of various strings. Enter:

alg.probability(hw, "Hello world!")

5
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Scala responds with something like:

res3: Double = 1.0

This means that the answer is of type Double, has value 1.0, and is
given the name res3. We can similarly ask:

alg.probability(hw, "Goodbye!")

Scala responds with something like:

res4: Double = 0.0

While this scenario is quite trivial, this example outlines the typical
process involved with using probabilistic models in Figaro: Build the
model, run an inference algorithm, and query for a result.



3
F I G A R O ’ S R E P R E S E N TAT I O N

This section describes the basic building blocks of Figaro models. We
present the basic definitions of different kinds of model components.
In the following section, we will show how to use these components
to create a rich variety of models.

3.1 elements

All data structures that are part of a Figaro model are elements. El-
ements can be combined in various ways to produce more complex
elements. The simplest elements are atomic elements that do not de-
pend on other elements. An example of an atomic element is:

Figaro classes are
capitalized, while
Scala reserved words
are not

Constant(6)

This defines the probabilistic model that produces the integer 6

with probability 1.0. Another atomic element is:

Constant("Hello")

which produces the string "Hello" with probability 1.0. These two
examples illustrate that every Figaro element has a value type, which
in the first case is Int and in the second case is String. The value type
is the type of values produced by the probabilistic model defined by
the element. Scala uses type

inference, so the
value type of the
parameter can often
be omitted at class
creation (the
compiler will
determine the type)

Scala is an object-oriented language, so all Figaro elements are in-
stances of an Element class. The Element class is parameterized by
its value type. In Scala’s notation, the first element is an instance of
Element[Int] while the second is an instance of Element[String].

A constant is a particular type of element that is an instance of the
Constant class, which is a subclass of Element. So, more specifically,
the first element Scala uses type inference, so the value type of the
parameter can often be omitted at class creation (the compiler will
determine the type) above is an instance of Constant[Int]. Figaro’s
representation is defined by a class hierarchy under Element.

Every Figaro Element[U] has a value, which represents the current
value of the element and is of type U. For Constant elements, the
value of the element never changes. However, for stochastic elements,
the value of the element may change depending on the usage of the
model, as explained in the next section.

7
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3.2 atomic elements

An atomic element is one that does not depend on any other elements.
Constants are unusual atomic elements in that they are not random.
All the other built-in atomic classes contain some aspect of random-
ness. We illustrate some of these classes by examples.

• Flip(0.7) is an Element[Boolean] that represents the proba-
bilistic model that produces true with probability 0.7 and false
with probability 0.3.

• Select(0.2 -> 1, 0.3 -> 2, 0.5 -> 3) is an Element[Int] that
represents the probabilistic model that produces 1 with prob-
ability 0.2, 2 with probability 0.3, and 3 with probability 0.5.
Select can select between elements of any type, so we may also
have Select(0.4 -> "a", 0.6 -> "b"), which is an Element-

[String].

• The continuous Uniform(0.0, 2.0) is an Element[Double] that
represents the continuous uniform probability distribution be-
tween 0 and 2.

While Flip and Select are in the language package that was im-
ported earlier, Uniform is in the library.atomic.continuous package
that needs to be imported using:

The _ is the Scala
version of Java’s *
for imports

import com.cra.figaro.library.atomic.continuous._

Other built-in continuous atomic classes include Normal, Exponent-

ial, Gamma, Beta, and Dirichlet, also found in the library.atomic.-
continuous package, while discrete elements include discrete Uniform,
Geometric, Binomial, and Poisson, to be found in the library.atom-

ic.discrete package.

3.3 compound elements

In Flip(0.7), the argument to Flip is a Double. There is another
version of Flip in which the argument is an Element[Double]. For
example, we might have:

Flip(Uniform(0.0, 1.0))

which represents the probabilistic model that produces true with
a probability that is uniformly distributed between 0 and 1. This is
a compound element that is built from another element. Most of the
atomic elements described in the previous subsection have compound
versions.

Another example of a compound element is a conditional. The ele-
ment:
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Note If is a Figaro
class, not the Scala
if reserved word

If(Flip(0.7), Constant(1), Select(0.4 -> 2, 0.6 -> 3))

represents the Element[Int] in which with probability 0.7, Constant-
(1) is chosen, producing 1 with probability 1.0, while with probability
0.3, Select(0.4 -> 2, 0.6 -> 3) is chosen, producing 2 with prob-
ability 0.4 and 3 with probability 0.6. Overall, 1 is produced with
probability 0.7 * 1 = 0.7, 2 with probability 0.3 * 0.4 = 0.12, and 3

with probability 0.3 * 0.6 = 0.18. The first argument to If must be
an Element[Boolean], while the other two arguments must have the
same value type, which also becomes the value type of the If. If can
be found in the library.compound package.

3.4 chain

Figaro provides a useful building block for building compound el-
ements, called chain. Intuitively, a chain takes a probability distribu-
tion over a "parent" element and a conditional probability distribution
over a "child" element given the parent to produce a distribution over
the child.

A Chain has two type parameters, T and U, where T is the value
type of the parent element and U is the value type of the child ele-
ment. A Chain[T,U] takes two arguments: (1) an Element[T], repre-
senting the parent element, and (2) a function from a value of type
T to an Element[U], representing the conditional distribution. Scala’s
notation for this type of function is T => Element[U]. For each pos-
sible value of the parent element, this function specifies an element
defining the distribution over the child. The Chain itself represents
the probability distribution over the child that results from this chain-
ing. Thinking in terms of a generative process, a Chain represents the
probabilistic model in which first a value of type T is produced from Scala notation for

the type of a
function is: inType
=> outType

the parent argument, then the function in the second argument is ap-
plied to this value to generate a particular Element[U], and finally a
particular value of type U is randomly produced from the generated
Element[U]. Therefore, a Chain[T,U] is an Element[U].

For example:

Chain(Flip(0.7), (b: Boolean) =>

if (b) Constant(1); else Select(0.4 -> 2, 0.6 -> 3))

represents exactly the same probabilistic model as:

If(Flip(0.7), Constant(1), Select(0.4 -> 2, 0.6 -> 3))

Let’s understand this example from the inside out. First:

if (b) Constant(1); else Select(0.4 -> 2, 0.6 -> 3)
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is a Scala expression. b is a Boolean variable. If b is true, the ex-
pression produces the element Constant(1), otherwise it produces
the element Select(0.4 -> 2, 0.6 -> 3). Note that this is a Scala
expression, not Figaro’s conditional data structure (all Figaro classes
are capitalized). Now:

(b: Boolean) => Anonymous
functions in Scala
are created by
defining an
argument list and
the body of the
function. The return
type is inferred by
the compiler

if (b) Constant(1); else Select(0.4 -> 2, 0.6 -> 3)

is Scala’s way of defining an anonymous function from an argu-
ment named b of type Boolean to a result defined by this if expres-
sion. This function is the second argument to the chain. The first
argument is the element Flip(0.7). The chain represents the prob-
abilistic model in which first a Boolean is produced, where true is
produced with probability 0.7, then the function is applied to obtain
either Constant(1) or Select(0.4 -> 2, 0.6 -> 3), and finally the
resulting element is used to produce an integer.

This is exactly the same model as that represented by the condi-
tional element in the previous subsection. It is easy to see that any
conditional can be represented by a chain in a similar way. Chaining
is in fact an extremely powerful concept and we will see a number
of examples of it in this tutorial. It is sufficient to represent all com-
pound elements. All the compound elements in the previous section
can be represented using a chain, and many of them are actually im-
plemented that way. Note that there is a version of Chain that utilizes
two parents and requires a function from a tuple of the parent types
to the output type. If more parents are required for a Chain, multiple
Chains can be nested together.

3.5 apply

Another useful tool for building elements is Apply. Apply serves to
lift Scala functions that operate on values to Figaro elements. For
example:

Figaro Apply is a
class, different than
the Scala apply

which is a method
defined on many
classes

(i: Int) => i + 5

is the Scala function that adds 5 to its integer argument.

Apply(Select(0.2 -> 1, 0.8 -> 2), (i: Int) => i + 5)

is the Figaro element representing the probabilistic model in which
first either 1 or 2 is produced with the corresponding probability, and
then 5 is added to the result. In the resulting probabilistic model, 6

is produced with probability 0.2 and 7 is produced with probability
0.8. There are versions of Apply defined for functions of up to 5 argu-
ments. Sequences in Scala

are similar to Java.
Seq is the superclass
in Scala for many
types of data
structures, such as
List.

There are a variety of operators and functions that are defined us-
ing Apply. For example:
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• ^^ creates tuples. For example, ^^(x, y) where x and y are ele-
ments, creates an element of pairs. ^^ is defined for up to five
arguments. The arguments can have different value types.

• If x is an element whose value type is a tuple, x._1 is an el-
ement that corresponds to extracting the first component of x.
Similarly for _2, _3, _4, and _5.

• x === y, where x and y have the same value type, is the element
that produces true whenever they are equal. Similarly for !=.

• A standard set of Boolean and arithmetic operators is provided.

3.6 processes and containers

New to Figaro 3.0 is a collections library. The general trait of Figaro
collections is Process, which represents a possibly infinite collection
of random variables. Formally, a Process is a mapping from an index
set to an element. A Process is parameterized by two types: the type
of the indices and the type of the values of the elements in the col-
lection. The Process is an extremely general class that can be used to
represent things like Gaussian processes or continuous time Markov
processes.

When creating a Process, you need to specify how elements in
the collection are generated given an index. Not only that, in some
collections, the elements are dependent. Therefore, the Process class
contains a method to generate elements for many indices simultane-
ously, including the dependencies between them. This method must
also be provided by the user. If all the elements are independent, you
can use the IndependentProcess trait to specify this method.

There are a number of operations that are defined on every process.
These include:

• Getting the element at an index. If p is a Process[Int, Double],
p(5) gets the Element[Double] at index 5. This method throws
IndexOutOfRangeException if no element is defined at index 5.

• Getting elements at many indices simultaneously, for example,
using p(List(4,5,6)). This method can also throw IndexOutOf-

RangeException. The method creates a Scala Map from indices
to elements. Any elements representing dependencies between
the elements at these indices are also created but they are not
returned by this method.

• Safely getting an optional element at an index. p.get(5) will
return an Element[Option[Double]]. This element will always
have value None if no element is defined at index 5.

• Safely getting an optional element at many indices.
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• Mapping the values of every element in the process through a
function. For example, p.map(_ > 0) will produce a Process[Int,

Boolean].

• Chaining the value of every element in the process through a
function that returns an element. For example, p.chain(Normal(_,
1)) will produce a new collection in which every element is
normally distributed with mean equal to the value of the corre-
sponding element in the original process.

If you have a finite index set, you can use a Container, which takes
a sequence of indices. Because they are finite, containers have many
more operations defined on them, including a variety of folds and
aggregates. See the Scaladoc for the available operations.

A specific kind of container is a FixedSizeArray, which takes the
number of elements as the first argument and a function that gener-
ates an element for a given index as the second argument. For exam-
ple, new FixedSizeArray(10, (i: Int) => Flip(1.0 / (i + 1))) cre-
ates a container of ten Boolean elements.

There is a Container constructor that takes any number of ele-
ments and produces a container with those elements. For example,
Container(Flip(0.2), Flip(0.4)) creates a container consisting of
the two elements.

You can, naturally, have elements whose values are processes or
containers. Figaro provides the ProcessElement and ContainerElement

classes to represent these. Similar operations are defined for ProcessEl-
ement and ContainerElement as for processes and containers.
VariableSizeArray represents a collection of an unknown num-

ber of elements, where the number is itself defined by an element. It
takes two arguments, the number element, and a function that gener-
ates an element for a given index, like a fixed size array. For example,
VariableSizeArray(Binomial(20, 0.5), (i: Int) => Flip(1.0 / (i

+ 1)) creates a container of between 0 and 20 Boolean elements.



4
C R E AT I N G M O D E L S

The previous section described the basic building blocks of Figaro
models. Out of these building blocks, a wide variety of models can
be created. This section describes how to build a range of models.

4.1 basic models

One of the first things you can do with an element is to assign it to a
Scala value:

val burglary = Flip(0.01)

val in Figaro
represents an
immutable value.
When a thing is
assigned to a val,
data inside the thing
can change but the
reference stored in
the val is constant

A val represents a field (in this case burglary) that takes on an im-
mutable value (in this case the element Flip(0.01)). A field is not a
variable; its value cannot be changed (Note that the scala assignment
of the field burglary cannot change, but the value of the Figaro ele-
ment that is assigned to it, Flip(0.01), can change). You can use the
value of a field by referring to its name:

val alarm = If(burglary, Flip(0.9), Flip(0.1))

Recall that an element defines a process that probabilistically pro-
duces a value. If an element is referred to multiple times, it must
produce the same value everywhere it appears. Consider:

val x = Flip(0.5)

val y = x === x

Although we don’t know the value, x must produce the same value
on both sides of the equality test. Therefore, y produces the value true
with probability 1.0. In contrast, in:

val y = Flip(0.5) === Flip(0.5)

the left and right hand sides are distinct elements (each call pro-
duces a new Flip), so they need not produce the same value. There-
fore, y will produce true with probability 0.5.

With the tools we have defined so far, we can easily create a Bayesian
network. In the following code, CPD is a library element (based on
Chain) that makes it easy to define conditional probability distribu-
tions:

13
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This example is
found in
Burglary.scala

import com.cra.figaro.language._

import com.cra.figaro.library.compound.CPD

val burglary = Flip(0.01)

val earthquake = Flip(0.0001) Scala statements can
be written on
multiple lines

val alarm = CPD(burglary, earthquake,

(false, false) -> Flip(0.001),

(false, true) -> Flip(0.1),

(true, false) -> Flip(0.9),

(true, true) -> Flip(0.99))

val johnCalls = CPD(alarm,

false -> Flip(0.01),

true -> Flip(0.7))

With CPD, every single combination of values of the parents needs to
be listed. RichCPD provides a more flexible format that allows for spec-
ification of structures such as context specific independence. Each
clause in a RichCPD consists of a tuple of cases, one for each parent. A
case can be OneOf a set of values, NoneOf a set of values (meaning that
it matches all values except for the ones listed), or *, meaning that it
accepts all values. For example:

import com.cra.figaro.language._

import com.cra.figaro.library.compound._

val x1 = Select(0.1 -> 1, 0.2 -> 2, 0.3 -> 3, 0.4 -> 4)

val x2 = Flip(0.6)

val x3 = Constant(5)

val x4 = Flip(0.8)

val y = RichCPD(x1, x2, x3, x4,

(OneOf(1, 2), *, OneOf(5), *) -> Flip(0.1),

(NoneOf(4), OneOf(false), *, *) -> Flip(0.7),

(*, *, NoneOf(6, 7), OneOf(true)) -> Flip(0.9),

(*, *, *, OneOf(false)) -> Constant(true))

A particular combination of values of the parents is matched against
each row in turn, and the first match is chosen. For example, the com-
bination (1, false, 5, true) matches the first three rows, so the first
result (Flip(0.1)) is chosen. All possible values of the parent still
need to be accounted for in the argument list using a combination of
OneOf, NoneOf and *.
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4.2 conditions and constraints

So far, we have described models that generate the values of elements.
It is also possible to influence the values of elements by imposing
conditions or constraints on them.

A condition represents something the value of the element must sat-
isfy. Only values that satisfy the condition are possible. Every element
has a condition, which is a function from a value of the element to
a Boolean. If the element is of type Element[T], the condition is of
type T => Boolean. Conditions can have multiple purposes. One is
to assert evidence, by specifying something that is known about an
element. Alternatively, a condition can specify a structural property
of a model, for example, that only one of two teams playing a game
can be the winner.

The default condition of an element returns true for all values. The
condition can be changed using setCondition:

val x1 = Select(0.1 -> 1, 0.2 -> 2, 0.3 -> 3, 0.4 -> 4)

x1.setCondition((i: Int) => i == 1 || i == 4)

which says that x1 must have value 1 or 4. We can add a condition
on top of existing conditions using the addCondition method. For
example, the following code says that not only must x1 equal 1 or 4,
it must also be odd:

x1.addCondition((i: Int) => i % 2 == 1)

The observe method provides an easy way to specify a condition
that only allows a single value. For example, to specify that x1 must
have the value 2, we can use:

x1.observe(2)

Note that using observe will remove all previous conditions on an
element.

A constraint provides a way to specify a potential or weighting over
an element. It is a function from a value of the element to a Double,
so if the element has type Element[T], the constraint is of type T =>

Double.
Constraint values should always be non-negative. Also, although

it is not strictly enforced, we recommend that constraint values be
at most 1. Some algorithms compute upper bounds on probabilities
and need to assume an upper bound on constraint values. An upper
bound of 1 is assumed, so if the actual value can be higher, these
algorithms will be incorrect. For algorithms that don’t compute upper
bounds in this way, it doesn’t matter. Currently, the only algorithms
that compute upper bounds like this are the lazy factored inference
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algorithms. If you have a constraint value greater than 1, a warning
will be issued.

Constraints serve multiple purposes in Figaro. One is to specify
soft evidence on an element. For example, if in the above Bayesian
network we think we heard John call but we’re not sure, we might
introduce the constraint:

johnCalls.setConstraint((b: Boolean) =>

if (b) 1.0; else 0.1)

This line will have the effect of making John calling 10 times more
likely than not, all else being equal. Another purpose of constraints is
to define some probabilistic relationships conveniently that are more
difficult to express without them. Consider the following example, in
which we are modeling the process of firms bidding for a contract
and one of them being selected as the winner.

This example is
found in Firms.scalaimport com.cra.figaro.language._

import com.cra.figaro.library.atomic._

import com.cra.figaro.library.compound.If

class Firm {

val efficient = Flip(0.3)

val bid = If(efficient, continuous.Uniform(5, 15),

continuous.Uniform(10, 20))

}

val firms = Array.fill(20)(new Firm)

val winner = discrete.Uniform(firms:_*)

val winningBid = Chain(winner, (f: Firm) => f.bid)

winningBid.setConstraint((d: Double) => 20 − d)

This example shows some new Scala features. First, we have a class
definition (the Firm class). A class creates a type that can be instanti-
ated to create instances. The Firm class has two fields, efficient and
bid. Note that bid makes use of continuous.Uniform. This is the con-
tinuous uniform element defined in the library.atomic.continuous

package, but we did not import the members of this package, only the
members of the library.atomic package. The reason we did things
this way is that later in the example, we use the discrete uniform, and
we want to be explicit about which uniform element we mean at each
point.

Once we have defined the Firm class, we create an array named
firms consisting of 20 instances of Firm.Array.fill(20)(new Firm)

creates an array filled with the result of 20 different invocations of new
Firm, each of which creates a separate instance of Firm (and separate
Figaro elements in each class). We then define the winner to be one
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of the firms, chosen uniformly. Note the notation firms:_*. The el-
ement discrete.Uniform takes as arguments an explicit sequence of
values of variable length, for example, discrete.Uniform(1, 2, 5)

or discrete.Uniform("x"). Since firms is a single field representing
an array, we must convert it into a sequence of arguments, which is
accomplished using the :_* notation. The field winner represents an
Element[Firm]; it is intended to mean the winning bidder, although
so far we have done nothing to relate the winner to its bid.

The next line is interesting. It allows us to identify the bid of the
winning bidder as an element with a name, even though we don’t
know who the winner is. We can do this because even though we
don’t know who the winner is, we can refer to the winner field, and
because the value of winner, whatever it is, is a Firm that has a bid

field, which is an element that can be referred to. It is important to
realize that this Chain does not create a new element but rather refers
to the element f.bid that was created previously.

Finally, we introduce the constraint, which says that a winning bid
of d has weight 20 − d. This means that a winning bid of 5 is 15

times more likely than a winning bid of 19. The effect is to make
the winning bid more likely to be low. Note that in this model, the
winning bid is not necessarily the lowest bid. For various reasons,
the lowest bidder might not win the contract, perhaps because they
offer a poor quality service or they don’t have the right connections.
Using a constraint, the model is specified very simply using a discrete
uniform selection and a simple constraint.

Constraints are also useful for expressing undirected models such
as relational Markov networks or Markov logic networks. To illus-
trate, we will use a version of the friends and smokers example. This
example involves a number of people and their smoking habits. Peo-
ple have some propensity to smoke, and people are likely to have the
same smoking habit as their friends.

This example is
found in
Smokers.scala

import com.cra.figaro.language.Flip

import com.cra.figaro.library.compound.^^

class Person {

val smokes = Flip(0.6)

}

val alice, bob, clara = new Person

val friends = List((alice, bob), (bob, clara))

clara.smokes.observe(true)

Single line function
definitions in Scala
do not need
bracketing

def smokingInfluence(pair: (Boolean, Boolean)) =

if (pair._1 == pair._2) 3.0; else 1.0

for { (p1, p2) <- friends } {
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^^(p1.smokes, p2.smokes).setConstraint(smokingInfluence)

}

First, we create a Person class with a smokes field. We create three
different people and a network of friends, represented by a list of
pairs of people. We also observe that one of the people smokes.

Now we create the constraint function smokingInfluence. This func-
tion takes a pair of Booleans, and returns 3.0 if they are the same, 1.0
if different. The intended meaning of this function is to compare the
smoking habit of two friends, and say that having the same smok-
ing habit is three times as likely as a different smoking habit, all else
being equal.

Finally, we apply the constraint to all the pairs of friends. The code
uses a Scala feature called a "for comprehension". The notation for {

(p1, p2) <- friends } "do something" iterates through all pairs of
people in the friends list and executes "do something" for each pair.
In this case, "do something" is "add the constraint on their smoking
habits to the pair of friends". The notation ^^(p1.smokes, p2.smokes)

takes each pair of friends and creates the pair element consisting
of their smoking habits. We then assign the smokingInfluence con-
straint to this pair.

4.3 classes , instances , and relationships

The object-oriented nature of Scala makes Figaro ideal for represent-
ing probabilistic models involving objects and relationships such as
probabilistic relational models (PRMs). In the following example, we
will see how to define general classes of object, and create instances
of a class by using a subclass of the class specially designed for the
instance.

In this example, we are given two possible sources and a sample
that came from one of the sources, and want to determine which
source the sample came from based on the strength of the match
with each source.

Abstract classes in
Scala are similar as
in Java; they cannot
be instantiated

class Source(val name: String)

abstract class Sample {

val fromSource : Element[Source]

}

class Pair(val source: Source, val sample: Sample) {

val isTheRightSource = Apply(sample.fromSource, (s:

Source) => s == source)

val distance = If(isTheRightSource,

Normal(0.0, 1.0),

Uniform(0.0, 10.0))
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}

Defining class
contents at
instantiation time
will override
undefined values

val source1 = new Source("Source 1")

val source2 = new Source("Source 2")

val sample1 = new Sample {

val fromSource = Select(0.5 -> source1, 0.5 -> source2)

}

val pair1 = new Pair(source1, sample1)

val pair2 = new Pair(source2, sample1)

pair1.distance.setCondition((d:Double) => (d > 0.15 && d <

0.25))

pair2.distance.setCondition((d:Double) => (d > 1.45 && d <

1.55))

We begin by creating classes representing sources and samples,
where each sample comes from a source. Note that Sample is an
abstract class, because in this class we do not say anything about
what source the sample came from (the from Source field has not
been assigned an Element[Source] yet). We then create the Pair class
representing a pair of a source and a sample. Pair has two fields:
isTheRightSource, which produces true if the sample is from the
source in the pair, and distance, which measures the closeness of the
match between the sample and the source (lower distance means bet-
ter match). The distance will tend to be smaller if the sample is from
the right source but will not always be so.

Now it’s time to create some instances. Note that the Source class
takes an argument which is the name of the source. When we create
instances source1 and source2 of this class, we supply the name argu-
ment. Next, we create an instance of Sample. Since Sample is abstract,
we need to supply a definition of fromSource. We can do that right
in line here, specifying that sample1 could come either from source1

or source2, each with probability 0.5. Finally, we create pairs pair-
ing both of the sources to sample1 and create conditions about the
distances. The conditions are ranges rather than exact observations
because exact observations on continuous elements can be problem-
atic for many types of inference algorithms.

Using similar techniques, we can create a PRM. The following ex-
ample shows the classical actors and movies PRM. There are three
classes: actors, movies, and appearances relating actors to movies.
Whether an actor receives an award for an appearance depends on
the fame of the actor and the quality of the movie. The Figaro code
for this example is as follows:

This example can be
found in
SimpleMovie.scala

import com.cra.figaro.library.compound.CPD

import com.cra.figaro.language._
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class Actor {

val famous = Flip(0.1)

}

class Movie {

val quality = Select(0.3 -> ’low, 0.5 -> ’medium, 0.2 ->

’high)

}

The ’ in front of a
string creates a
Scala symbol, which
are treated like
String constants

class Appearance(actor: Actor, movie: Movie) {

def probAward(quality: Symbol, famous: Boolean) =

(quality, famous) match {

case (’low, false) => 0.001

case (’low, true) => 0.01

case (’medium, false) => 0.01

case (’medium, true) => 0.05

case (’high, false) => 0.05

case (’high, true) => 0.2

}

val award = SwitchingFlip(Apply(movie.quality,

actor.famous, (q: Symbol, f: Boolean) => probAward(q, f)))

}

val actor1 = new Actor

val actor2 = new Actor

val actor3 = new Actor

val movie1 = new Movie

val movie2 = new Movie

val appearance1 = new Appearance(actor1, movie1)

val appearance2 = new Appearance(actor2, movie2)

val appearance3 = new Appearance(actor3, movie2)

actor3.famous.observe(true)

movie2.quality.observe(’high)

The _.award
notation is Scala
shorthand to retrieve
the award value of
each element of the
map

// Ensure that exactly one appearance gets an award.

def uniqueAwardCondition(awards: List[Boolean]) =

awards.count((b: Boolean) => b) == 1

val allAwards: Element[List[Boolean]] =

Inject(appearances.map(_.award):_*)

allAwards.setCondition(uniqueAwardCondition)

The code is self-explanatory except for the last few lines, which en-
force the condition that an award is given to exactly one appearance.
The function uniqueAwardCondition takes a list of award Booleans
and returns true if exactly one Boolean in the list is true. The count
method counts the number of elements in the list that satisfy the
predicate contained in its argument. In this case the predicate is (b:
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Boolean) => b which is true precisely when the element of the list
is true. So awards.count((b: Boolean) => b) counts the number of
elements in the list that are true.

We then define the allAwards element to be the element over lists
of Booleans consisting of the award field of all the appearances. Here
we have a new notation: appearances.map(_.award). We have already
seen the map method, which applies a function to every element of a
list and returns a new list consisting of the results. In this case, the
argument to map is the function _.award. This is shorthand for a func-
tion of one argument in which the argument appears once in the body
and in which the type of the argument is known. Here, the type of the
argument is clearly an appearance. We could have used appearance

=> appearance.award. The notation _.award is short for this. Finally,
we impose the uniqueAwardCondition on allAwards, ensuring that
exactly one appearance is awarded.

4.4 mutable fields

Up to this point, all our Figaro programs have been purely functional.
All elements have been defined by a val, and they have been im-
mutable. In principle, all programs can be written in a purely func-
tional style. However, this can make it quite inconvenient to repre-
sent situations in which different entities refer to each other. Scala
supports both functional and non-functional styles of programming,
allowing us to gain the benefits of both.

For example, let’s expand the actors and movies example so that
actors have a skill, and the quality of a movie depends on the skill of
the actors in it. In turn, the fame of an actor depends on the quality
of the movies in which he or she has appeared. We have created a
mutual dependence of actors on movies which is hard to represent
in a purely functional style. We can capture it in Figaro using the
following code. This code also illustrates a use of Figaro collections.

This example can be
found in
MutableMovie.scala

import com.cra.figaro.library.compound.CPD

import com.cra.figaro.language._

class Actor {

var movies: List[Movie] = List()

lazy val skillful = Flip(0.1)

lazy val qualities = Container(movies.map(_.quality):_*)

lazy val numGoodMovies = qualities.count(_ == ’high)

lazy val famous = Chain(numGoodMovies, (n: Int) =>

if (n >= 2) Flip(0.8) else Flip(0.1))

}

class Movie {

var actors: List[Actor] = List()



4.4 mutable fields 22

lazy val skills = Container(actors.map(_.skillful):_*)

lazy val actorsAllGood = skills.exists(b => b)

lazy val probLow =

Apply(actorsAllGood, (b: Boolean) => if (b) 0.2; else

0.5)

lazy val probHigh =

Apply(actorsAllGood, (b: Boolean) => if (b) 0.5; else

0.2)

lazy val quality =

Select(probLow -> ’low, Constant(0.3) -> ’medium,

probHigh -> ’high)

}

class Appearance(actor: Actor, movie: Movie) {

actor.movies ::= movie ::= is Scala
shorthand for list
concatenation

movie.actors ::= actor

def probAward(quality: Symbol, famous: Boolean) =

(quality, famous) match {

case (’low, false) => 0.001

case (’low, true) => 0.01

case (’medium, false) => 0.01

case (’medium, true) => 0.05

case (’high, false) => 0.05

case (’high, true) => 0.2

}

lazy val award = SwitchingFlip(Apply(movie.quality,

actor.famous, (q: Symbol, f: Boolean) => probAward(q, f)))

}

val actor1 = new Actor

val actor2 = new Actor

val actor3 = new Actor

val movie1 = new Movie

val movie2 = new Movie

val appearance1 = new Appearance(actor1, movie1)

val appearance2 = new Appearance(actor2, movie2)

val appearance3 = new Appearance(actor3, movie2)

actor3.famous.observe(true)

movie2.quality.observe(’high)

// Ensure that exactly one appearance gets an award.

def uniqueAwardCondition(awards: List[Boolean]) =

awards.count((b: Boolean) => b) == 1

val allAwards: Element[List[Boolean]] =
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Inject(appearances.map(_.award):_*)

allAwards.setCondition(uniqueAwardCondition)

First, note that the Actor class has a movies field, whose purpose is
to indicate the list of movies the actor has appeared in. Likewise, the
Movie class has an actors field to represent the actors who appear
in it. If these fields were immutable, we would need to create all the
movies an actor appears in before we create the actor, and we would
need to create all the actors appearing in a movie before the movie,
which is impossible. Therefore, we use mutable variables, which are
indicated in Scala by the var keyword.

The initial value of both movies and actors is an empty list. We add
elements to them later. In fact, whenever we create an appearance, we
make sure to add the movie to the actor’s list of movies and vice versa.
This is achieved by the first two lines of the Appearance class. The
notation actor.movies ::= movie is short for actor.movies = movie

:: actor.movies, which prepends movie to the current actor.movies
list, and replaces the current list with the new list. The ::= notation
is a variant of the familiar += notation common in many languages.

The Actor class has skillful and famous fields. Rather than an
ordinary val, each of these fields is defined to be lazy val, which
means that their contents are not determined until they are required
by some other computation. This is necessary for us because their
contents can depend on the list of movies the actor appears in. For
example, whether the actor is famous depends on whether at least
two movies have high quality. If famous was an ordinary val, its value
(an Element[Boolean]) would be computed at the point it is defined,
so it would use an empty list of movies. Because we want to use the
correct list of movies in defining it, we postpone evaluating it until
the movies list has been filled. For actor3, this will happen when
we make the observation actor3.famous.observe(true), which we
make sure to delay until after all the appearances have been created.
For other actors, the famous field will be evaluated even later, dur-
ing inference. Care should be taken with declaring elements as lazy.
Side effects and unintended consequences can occur if a lazy element
declared outside a Chain is first required (i.e., created) during the
execution of a Chain.

Do not hesitate to use mutation if it will help you organize your
program in a logical way. In one application, we have found it con-
venient to use a hash table that maps concepts to their associated
elements. This allowed us to create the element associated with a con-
cept as the concept was introduced. If we later had to refer to the
same concept again, we could easily access its element.
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4.5 universes

A central concept in Figaro is a universe. A universe is simply a collec-
tion of elements. Reasoning algorithms operate on a universe (or, as
we shall see for dependent universe reasoning, on multiple connected
universes). Most of the time while using Figaro, you will not need to
create a new universe and can rely on the default universe, which is
just called universe. It can be accessed using:

import com.cra.figaro.language._

import com.cra.figaro.language.Universe._

If you do need a different universe, you can call Universe.create-
New(). This creates a new universe and sets the default universe to it.
If you are going to need the old default universe, you will need a way
to refer to it. You could use:

val u1 = Universe.universe

val u2 = Universe.createNew()

u1 will now refer to the old default universe while u2 refers to the
new one. Every element belongs to exactly one universe. Ordinarily,
when an element is created, it is assigned to the current default uni-
verse. As we will see below when we talk about element collections, it
is possible to assign a particular element to a different universe from
the current default.

Elements can be activated or deactivated. Elements that are inac-
tive are not operated on by reasoning algorithms. Elements are active
when created. To deactivate an element e use e.deactivate(); to re-
activate it, use e.activate(). When a compound element is created
that uses a parent element, the parent must already be active.

You can get a list of all active elements in universe u using u.active-

Elements. There are many more methods of a universe that are use-
ful for writing reasoning algorithms. See the documentation in Uni-
verse.scala for more details.

4.6 names , element collections , and references

Suppose we want to create a PRM in which we are uncertain about
the value of an attribute whose value is itself an instance of another
class (which is called reference uncertainty). For example, suppose
we have the following classes and instances:

This example can be
found in
CarAndEngine.scala

import com.cra.figaro.language._

abstract class Engine { val power : Element[Symbol] }

class V8 extends Engine {
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val power = Select(0.8 -> ’low, 0.2 -> ’high)

}

class V6 extends Engine {

val power = Select(0.8 -> ’low, 0.2 -> ’high)

}

object MySuperEngine extends V8 {

val power = Constant(’high)

}

class Car {

val engine = Uniform[Engine](new V8, new V6,

MySuperEngine)

val speed = CPD(?,

’high -> Constant(90.0),

’medium -> Constant(80.0),

’low -> Constant(70.0))

}

We want the speed of the car to depend on the power of its en-
gine, but we have uncertainty over what the engine actually is. What
should we put in place of the question mark? The obvious choice is
engine.power, but this does not work because engine is an Element-

[Engine], not an instance of Engine.
To get around this problem, Figaro provides names and element col-

lections. Every element has a name and belongs to an element col-
lection. By default, the name is the empty string and the element
collection is the default universe at the time the element is created,
which works because universes are element collections. So, most of
the time, as in the tutorial to this point, you don’t have to worry about
the name and element collection of an element. To assign a name and
element collection to an element explicitly, you provide an extra pair
of arguments when creating it.

We can give the engine a name and make it belong to the car as an
element collection as follows:

class Car extends ElementCollection {

val engine = Uniform[Engine](new V8, new V6,

MySuperEngine)("engine", this)

}

In the first line we make the Car class inherit from ElementCollect-

ion, so that every instance of Car is an element collection. In the last
line, we assign engine the name "engine" and add it to the instance
of Car being created, which is referred to by this within the Car

class. We similarly make the abstract Engine class inherit element
collections and assign power the name "power" within V8, V6, and

MySuperEngine within each subclass of Engine.
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An element collection, like a universe, is simply a set of elements.
The difference is that a universe is also a set of elements on which a
reasoning algorithm operates. An element collection provides the abil-
ity to refer to an element by name. For example, if car is an instance
of Car, we can use car.get[Engine]("engine") to get at the element
named "engine". The get method takes a type parameter, which is the
value type of the element being referred to. The notation [Engine]

specifies this type parameter, and serves to make sure that the expres-
sion car.get[Engine]("engine") has type Element[Engine].

The key ability of element collections that allows them to solve
our puzzle is their ability to get at elements embedded in the value
of an element. It uses references to do this. A reference is a series of
names separated by dots. For example, "engine.power" is a reference.
When we call car.get[Symbol]("engine.power"), it refers to the ele-
ment named "power" within the value of the element named "engine"
within the car. The value of this expression is a ReferenceElement

that captures the uncertainty about which power element is actually
being referred to. In a particular state of the world, i.e., an assign-
ment of values to all elements, it is possible to determine the value
of engine and therefore which power element is being referred to. So
a ReferenceElement is a deterministic element that defines a way to
get its value in any possible world.

So, finally, the answer to our puzzle is that in place of the ques-
tion mark, we put get[Symbol]("engine.power"). This applies the
get method to the instance of Car being created. Here is the full ex-
ample:

import com.cra.figaro.language._

abstract class Engine extends ElementCollection {

val power : Element[Symbol]

}

class V8 extends Engine {

val power = Select(0.8 -> ’low, 0.2 -> ’high)("power",

this)

}

class V6 extends Engine {

val power = Select(0.8 -> ’low, 0.2 -> ’high)("power",

this)

}

object MySuperEngine extends V8 {

val power = Constant(’high)("power", this)

}

class Car extends ElementCollection {

val engine = Uniform[Engine](new V8, new V6,

MySuperEngine)("engine", this)

val speed = CPD(
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get[Symbol]("engine.power"),

’high -> Constant(90.0),

’medium -> Constant(80.0),

’low -> Constant(70.0))

)

}

4.7 multi-valued references and aggregates

The previous subsection described how to refer to elements using
references that identify a single element. A feature of PRMs is the
ability to define multi-valued relationships, where an entity is related
to multiple entities via an attribute. In Figaro, we use multi-valued
references and aggregates to capture these kinds of situations. For
example: This example can be

found in MultiVal-
uedReferenceUncer-
tainty.scala

import com.cra.figaro.language._

class Component extends ElementCollection {

val f = Select(0.2 -> 2, 0.3 -> 3, 0.5 -> 5)("f", this)

}

val specialComponent1 = new Component

val specialComponent2 = new Component

def makeComponent() =

Select(0.1 -> specialComponent1,

0.2 -> specialComponent2,

0.7 -> new Component)

class Container extends ElementCollection {

val components = MakeList(Select(0.5 -> 1, 0.5 -> 2),

makeComponent)("components", this)

The body of the sum
function is
shorthand notation
for Scala’s fold
function. Fold
iterates through a
sequence and applies
a function to the
previous result and
each new entry in
turn. The (_ + _ )
notation will add the
previous value to
each value in xs.

val sum = getAggregate((xs: MultiSet[Int]) => (0 /: xs)(_ +
_))("components.f")

}

First, we create a Component class with an element named "f". We
then define two specific instances of Component. Next, we define a
makeComponent function that either produces one of the specific in-
stances or a new instance of Component that is distinct from all other
instances. We then define a Container class that contains components.
Now, the contained components are a list that has either one or two
elements, each produced by makeComponent. We then create a sum ele-
ment that aggregates the values of all elements referred to by "compo-
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nents.f"; that is, the values of the elements named "f" in all the values
of the element named "components".

Multi-valued references have "set semantics". If the same element
appears more than once as the target of the reference, it only con-
tributes one value to the aggregate. So, if the components list has
two components, both of which are specialComponent1, whose value
is 2, the value of the aggregate will be 2, not 4. On the other hand,
if two different target elements both have the same value, both val-
ues contribute to the aggregate. For example, if the components are
specialComponent1 and specialComponent2, and both have value 2,
the value of the aggregate is 4.

A comment on the code: The code defining sum might look myste-
rious. This code takes a list of integers and returns their sum. This
is a standard Scala idiom that unfortunately is a bit obscure if you’re
not familiar with it. It is used to "fold" a function through a list. We
begin with 0 and then repeatedly add the current result to the next
element of the list until the list is exhausted. The notation (_ + _) is
shorthand for the function that takes two arguments and adds them.
The notation (0 /: xs) means that this function should be folded
through xs, starting from 0.



5
R E A S O N I N G

Figaro contains a number of reasoning algorithms that allow you
to do useful things with probabilistic models. First, we describe an
algorithm that simply computes the range of possible values of all
elements in a universe. Then, we describe three algorithms for com-
puting the conditional probability of query elements given evidence
(conditions and constraints) on elements. These are variable elimina-
tion, importance sampling, and Markov chain Monte Carlo. Next, we
describe algorithms for performing other kinds of reasoning. One is
an importance sampling algorithm for computing the probability of
evidence in a universe. We also discuss a variable elimination algo-
rithm and a simulated annealing algorithm for computing the most
likely values of elements given the evidence. Finally, we describe two
additional features of the reasoning: the ability to reason across multi-
ple universes, and a way to use abstractions in reasoning algorithms.

5.1 computing ranges

It is possible to compute the set of possible values of elements in a
universe, as long as expanding the probabilistic model of the universe
does not (1) result in generating an infinite number of elements; (2)
result in an infinite number of values for an element; or (3) involves an
element class for which getting the range has not been implemented.

To explain (1), computing the possible values of a chain requires
computing the possible values of the arguments and, for each value,
generating the appropriate element and computing all its possible
values. If the generated element also contains a chain, it will require
recursively generating new elements for all possible values of the
contained chain’s arguments. This could potentially lead to an infinite
recursion, in which case computing ranges will not terminate.

For (2), most built in element classes have a finite number of possi-
ble values. Exceptions are the atomic continuous classes like Uniform

and Normal.
To compute the values of elements in universe u, you first create a

Values object using:

import com.cra.figaro.algorithm._

val values = Values(u)

You can also create a Values object for the current universe simply
with:

val values = Values()

29
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values can then be used to get the possible values of any object.
For example:

val e1 = Flip(0.7)

val e2 = If(e1, Select(.2 -> 1, .8 -> 2), Select(.4 -> 2, .6

-> 3)

val values = Values()

values(e2)

returns a Set[Int] equal to { 1, 2, 3 }.
If you are only interested in getting the range of the single element

e2, you can use the shorthand Values()(e2). However, if you want
the range of multiple elements, you are better off creating a Values

object and applying it repeatedly to get the range of the different
elements. The reason is that within a Values object, computing the
range of an element is memoized (cached), meaning that the range is
only computed once for each object and then stored for future use.

5.2 asserting evidence

Most Figaro reasoning involves drawing conclusions from evidence.
Evidence in Figaro is specified in one of two ways. The first is through
conditions and constraints, as we described earlier. The second is by
providing named evidence, in which the evidence is associated with an
element with a particular name or reference.

There are a variety of situations where using named evidence is
beneficial. One might have a situation where the actual element re-
ferred to by a reference is uncertain, so we can’t directly specify a
condition or constraint on the element, but by associating the evi-
dence with the reference, we can ensure that it is applied correctly.
Names also allow us to keep track of and apply evidence to ele-
ments that correspond to the same object in different universes, as
will be seen below with dynamic reasoning. Finally, associating ev-
idence with names and references allows us to keep the evidence
separate from the definition of the probabilistic model, which is not
achieved by conditions and constraints.

Named evidence is specified by:
NamedEvidence(reference, evidence)

where reference is a reference, and evidence is an instance of the
Evidence class. There are three concrete subclasses of Evidence: Condit-

ion, Constraint, and Observation, which behave like an element’s
setCondition, setConstraint, and observe methods respectively.

For example:
NamedEvidence("car.size", Condition((s: Symbol) => s != ’small-

)))

represents the evidence that the element referred to by "car.size"

does not have value ’small.
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5.3 exact inference using variable elimination

Figaro provides the ability to perform exact inference using variable
elimination. The algorithm works in three steps:

1. Expand the universe to include all elements generated in any
possible world.

2. Convert each element into a factor.

3. Apply variable elimination to all the factors.

Step 1, like for range computation, requires that the expansion of
the universe terminate in a finite amount of time. Step 2 requires that
each element be of a class that can be converted into a set of fac-
tors. Every built-in class can be converted into a set of exact factors.
Atomic continuous elements with infinite range are handled in one of
two ways. As discussed later in the section, abstractions can be used
to make variable elimination work for continuous classes. If no ab-
stractions are defined for continuous elements, then each continuous
element is sampled and a factor is created from the samples. Figaro
outputs a warning in this instance to ensure the user intends to use a
continuous variable in a factored algorithm. Also see later, in the sec-
tion on creating a new element class, how to specify a way to convert
a new class into a set of factors.

To use variable elimination, you need to specify a set of query ele-
ments whose conditional probability you want to compute given the
evidence. For example:

import com.cra.figaro.language._

import com.cra.figaro.algorithm.factored._

val e1 = Select(0.25 -> 0.3, 0.25 -> 0.5, 0.25 -> 0.7, 0.25

-> 0.9)

val e2 = Flip(e1)

val e3 = If(e2, Select(0.3 -> 1, 0.7 -> 2), Constant(2))

e3.setCondition((i: Int) => i == 2)

val ve = VariableElimination(e2)

This will create a VariableElimination object that will apply vari-
able elimination to the universe containing e1, e2, and e3, leaving
query variable e2 uneliminated. However, it won’t perform the vari-
able elimination immediately. To tell it to perform variable elimina-
tion, you have to say:

ve.start()
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When this call terminates, you can use ve to answer queries using
three methods:
ve.distribution(e2) will return a stream containing possible val-

ues of e2 with their associated probabilities.
ve.probability(e2, predicate) will return the probability that

the value of e2 satisfies the given predicate. For example, (b: Boolean)

=> b is the function that takes a Boolean argument and returns true
precisely if its argument is true. So, ve.probability(e2, (b: Boolean)

=> b) computes the probability that e2 has value true. The probability
method also provides a shorthand version that specifies a value as
the second argument instead of a predicate and returns the probabil-
ity the element takes that specific value. So, for the previous example,
we could have written ve.probability(e2, true).

ve.expectation(e2, (b: Boolean) => if (b) 3.0; else 1.5) re-
turns the expectation of the given function applied to e2. If you just
want the expectation of the element, you just provide a function that
returns the value of the function.

Once you are done with the results of variable elimination, you can
call ve.kill(). This has the effect of freeing up memory used for
the results. Note that only elements provided in the argument list of
the VariableElimination class can be queried; if at a later point you
want to query a different element not in the argument list, you must
create a new instance of VariableElimination.

These methods start, kill, distribution, probability, and ex-

pectation are a uniform interface to all reasoning algorithms that
compute the conditional probability of query variables given evidence.
We will see below how this interface is extended for anytime algo-
rithms.

For convenience, Figaro also provides a one-line query method us-
ing variable elimination. Just use:
VariableElimination.probability(element, value)

This will take care of instantiating the algorithm and running in-
ference and returns the probability that the element has the given
value.

5.4 approximate inference using belief propagation

Figaro also contains another factored inference algorithm called be-
lief propagation (BP). BP is a message passing algorithm on a factor
graph (a bipartite graph of variables and factors). On factor graphs
with no loops, BP is an exact inference algorithm. On graphs with
loops (loopy factor graph), BP can be used to perform approximate
inference on the target variables. Note that in Figaro, the way that
Chains are converted to factors always produces a loopy factor graph,
even if the actual definition of the model contains no loops. Therefore,
most inference with BP in Figaro is approximate.
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The algorithm works in three steps:

1. Expand the universe to include all elements generated in any
possible world.

2. Convert each element into a factor and create a factor graph
from the factors.

3. Pass messages between the factor nodes and variables nodes for
the specified number of iterations.

4. Queries are answered on the targets using the posterior distri-
butions computed at each variable node.

Steps 1 and 2 operate in the same manner as variable elimination,
and the same restrictions on factors also applies. Just like in vari-
able elimination, you need to specify a set of query elements whose
conditional probability you want to compute given the evidence. For
example:

import com.cra.figaro.language._

import com.cra.figaro.algorithm.factored._

import

com.cra.figaro.algorithm.factored.beliefpropagation._

val e1 = Select(0.25 -> 0.3, 0.25 -> 0.5, 0.25 -> 0.7, 0.25

-> 0.9)

val e2 = Flip(e1)

val e3 = If(e2, Select(0.3 -> 1, 0.7 -> 2), Constant(2))

e3.setCondition((i: Int) => i == 2)

val bp = BeliefPropagation(100, e2)

This will create a BeliefPropagation object that will pass messages
on a factor graph created from the universe containing e1, e2, and

e3. The first argument is the number of iterations to pass messages
between the factor and variable nodes. However, it won’t perform BP
immediately. To tell it to run the algorithm, you have to say:

bp.start()

When this call terminates, you can use bp to answer the same
queries as defined in the variable elimination section. You can also
use a one-line shortcut like for variable elimination.

Continuous elements are handled in BP the same was as in variable
elimination (abstractions or sampled).
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5.5 lazy factored inference

Ordinarily, factored inference algorithms like variable elimination and
belief propagation cannot be applied to infinitely recursive models.
It’s easy to define such models, such as probabilistic grammars for
natural language, in Figaro. Figaro provides lazy factored inference
algorithms that expand the factor graph to a bounded depth and pre-
cisely quantify the effect of the unexplored part of the graph on the
query. It uses this information to compute lower and upper bounds
on the probability of the query.

To use lazy variable elimination, create an instance of LazyVariable-
Elimination. You can use the pump method to increase the depth of
expansion by 1. You can also use run(depth) to expand to the given
depth. You can find an example of lazy variable elimination in ac-
tion in LazyList.scala in the Figaro examples. You can also use lazy
belief propagation.

5.6 importance sampling

Figaro’s importance sampling algorithm is actually a combination of
importance and rejection sampling. It uses a simple forward sam-
pling approach. When it encounters a condition, it checks to see if
the condition is satisfied and rejects if it is not. When it encounters a
constraint, it multiplies the weight of the sample by the value of the
constraint.

Unlike variable elimination, this algorithm can be applied to mod-
els whose expansion produces an infinite number of elements, pro-
vided any particular possible world only requires a finite number
of elements to be generated. Also, this algorithm works for atomic
continuous models. In addition, as an approximate algorithm, it can
produce reasonably accurate answers much more quickly than the
exact variable elimination.

The interface to importance sampling is very similar to that to vari-
able elimination. For example:

import com.cra.figaro.language._

import com.cra.figaro.algorithm.sampling._

val e1 = Select(0.25 -> 0.3, 0.25 -> 0.5, 0.25 -> 0.7, 0.25

-> 0.9)

val e2 = Flip(e1)

val e3 = If(e2, Select(0.3 -> 1, 0.7 -> 2), Constant(2))

e3.setCondition((i: Int) => i == 2)

val imp = Importance(10000, e2)
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The first argument to Importance is an indication of how many
samples the algorithm should take. The second argument (and subse-
quent arguments) lists the element(s) that will be queried. After call-
ing imp.start(), you can use the methods distribution, probabil-

ity, and expectation to answer queries.
The importance sampling algorithm used above is an example of

a "one-time" algorithm. That is, the algorithm is run for 10,000 iter-
ations and terminates; it cannot be used again. Figaro also provides
an "anytime" importance sampling algorithm that runs in a separate
thread and continues to accumulate samples until it is stopped. A ma-
jor benefit of an anytime algorithm is that it can be queried while it
is running. Another benefit is that you can tell it how long you want
it to run.

Two additional methods are provided in the interface. imp.stop()
stops it from accumulating samples, while imp.resume() starts it go-
ing again, carrying on from where it left off before. In addition, the
kill method has the additional effect of killing the thread, so it is
essential that it be called when you are finished with the Importance

object. To create an anytime importance algorithm, simply omit the
number of samples argument to Importance. A typical way of using
anytime importance sampling, allowing it to run for one second, is as
follows:

val imp = Importance(e2)

imp.start()

Thread.sleep(1000)

imp.stop()

println(imp.probability(e2, (b: Boolean) => b))

imp.kill()

Importance sampling also provides a one-line query shortcut.
There is also a parallel version of Importance sampling that uses

Scala’s built in parallel collections. The interface to use parallel Im-
portance sampling is similar to the original algorithm with a few ex-
ceptions. First, this version sampling uses a model generator, which
is a function that produces a universe (Importance sampling is run in
parallel on separate but identical universes). Second, the user must
indicate the number of threads to use. Finally, instead of taking a set
of elements to query, the algorithm takes in a set of references, where
each reference refers to the same element on each of the parallel uni-
verses.

5.7 metropolis-hastings markov chain monte carlo

Figaro provides a Metropolis-Hastings Markov chain Monte Carlo al-
gorithm. Metropolis-Hastings uses a proposal distribution to propose
a new state at each step of the algorithm, and either accepts or rejects
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the proposal. In Figaro, a proposal involves proposing new random-
nesses for any number of elements. After proposing these new ran-
domnesses, any element that depends on those randomnesses must
have its value updated. Recall that the value of an element is a deter-
ministic function of its randomness and the values of its arguments,
so this update process is a deterministic result of the randomness
proposal.

Proposing the randomness of an element involves calling the next-

Randomness method of the element, which takes the current value of
the randomness as the argument. nextRandomness has been imple-
mented for all the built-in model classes, so you will not need to
worry about it unless you define your own class. See the section on
creating a new element class for details.

Computing the acceptance probability requires computing the ra-
tio of the element’s constraint of the new value divided by the con-
straint of the old value. Ordinarily, this is achieved by applying the
constraint to the new and old value separately and taking the ratio.
However, sometimes we want to define a constraint on a large data
structure, and applying the constraint to either the new or old value
will produce overflow or underflow, so the ratio won’t be well de-
fined. It might be the case that the ratio is well defined even though
the constraints are large, since only a small part of the data struc-
ture changes in a single Metropolis-Hastings situation. For example,
we might want to define a constraint on an ordering, penalizing the
number of items out of order. The total number of items out of order
might be large, but if a single iteration consists of swapping two el-
ements, the number that change might be small. For this reason, an
element contains a score method that takes the old value and the
new value and produces the ratio of the constraint of the new value
to the old value.

Figaro allows the user to specify which elements get proposed us-
ing a proposal scheme. Figaro also provides a default proposal scheme
that simply chooses a non-deterministic element in the universe uni-
formly at random and proposes a new randomness for it. To create
an anytime Metropolis-Hastings algorithm using the default proposal
scheme, use:

import com.cra.figaro.language._

import com.cra.figaro.algorithm.sampling._

val e1 = Select(0.25 -> 0.3, 0.25 -> 0.5, 0.25 -> 0.7, 0.25

-> 0.9)

val e2 = Flip(e1)

val e3 = If(e2, Select(0.3 -> 1, 0.7 -> 2), Constant(2))

e3.setCondition((i: Int) => i == 2)

val mh = MetropolisHastings(ProposalScheme.default, e2)
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Metropolis-Hastings takes two additional optional arguments. The
first represents the burn-in, which is the number of proposal steps the
algorithm goes through before collecting samples, while the second is
the number of proposal steps between samples. The default burn-in
is 0, while the default interval is 1. These arguments appear before
the query elements.

To use a one-time (i.e., non-anytime) Metropolis-Hastings algorithm,
simply provide the number of samples as the first argument.

Metropolis-Hastings also provides a one-line query shortcut.

5.7.1 Defining a proposal scheme

A proposal scheme is an instance of the ProposalScheme class. A
number of constructs are provided to help define proposal schemes.
We will illustrate some of them using the first movie example from
the section titled "Classes, instances, and relationships". The default
proposal scheme does not work well for this example because it is
unlikely to maintain the condition that exactly one appearance is
awarded. A better proposal scheme will maintain this condition by
always replacing one awarded appearance with another.

The SwitchingFlip class is defined to facilitate this. SwitchingFlip
is just like a regular Flip except that its nextRandomness method al-
ways returns the opposite of its argument. The award attribute of
Appearance is defined to be a SwitchingFlip.

The value of SwitchingFlip is that now we can change which ap-
pearance gets awarded by proposing the award attribute of the ap-
pearance that is currently awarded and one other appearance. This
idea is implemented in the function switchAwards, which returns a
proposal scheme depending on the current state of awards.

This example can be
found in
SimpleMovie.scala

def switchAwards(): ProposalScheme = {

val (awarded, unawarded) =

appearances.partition(_.award.value)

awarded.length match {

case 1 =>

val other = unawarded(random.nextInt(numAppearances −

1))

ProposalScheme(awarded(0).award, other.award)

case 0 =>

ProposalScheme(appearances(random.nextInt(numAppearances))

.award)

case _ =>

ProposalScheme(awarded(random.nextInt(awarded.length))

.award)

}

}
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switchAwards first makes lists of the awarded and unawarded ap-
pearances. Then, if exactly one appearance is awarded, it chooses one
unawarded element and returns ProposalScheme(awarded(0).award,
other.award). This scheme first proposes the award attribute of the
only awarded appearance and then proposes the award attribute of
the chosen unawarded appearance. Since award is now defined as
a SwitchingFlip, each award will switch value so there will still be
only one award awarded. In general, a ProposalScheme with a se-
quence of elements as arguments proposes each of them in turn.
Moving on, if zero appearances are currently awarded, it proposes
a single randomly chosen appearance’s award to bring the number
of awarded appearances to one. If more than one appearance is cur-
rently awarded, it proposes one of the awarded appearance’s awards
to reduce the number of awarded appearances.

In this example, we will also sometimes want to propose the fame
of actors or the quality of movies. To achieve this, we use a Disjoint-

Scheme, which returns various proposal schemes with different proba-
bilities. This is implemented in the following chooseScheme function:

private def chooseScheme(): ProposalScheme = {

DisjointScheme(

(0.5, () => switchAwards()),

(0.25, () =>

ProposalScheme(actors(random.nextInt(numActors)).famous)),

(0.25, () =>

ProposalScheme(movies(random.nextInt(numMovies)).quality))

)

}

In general, the proposal scheme argument of MetropolisHastings
is actually a function of zero arguments that returns a ProposalScheme.
The ProposalScheme.default is just that. Since chooseScheme is the
same, it can be passed directly to MetropolisHastings. So we can
call:

val alg =

MetropolisHastings(200000, chooseScheme, 5000,

appearance1.award, appearance2.award, appearance3.award)

In some cases, it might be useful to have the decision as to which
later elements to propose depend on the proposed values of earlier
elements. TypedScheme is provided for this purpose. It has a type pa-
rameter T which is the value type of the first element to be proposed.
The first argument to TypedScheme is a function of zero arguments
that returns an Element[T]. The second argument is a function from a
value of type T to an Option[ProposalScheme]. An Option[Proposal-

Scheme], as its name implies, is an optional proposal scheme. It can
take the value None, meaning that there is no proposal scheme, or
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the value Some(ps), where ps is a proposal scheme. This allows the
proposed value of the first element to determine, first of all, whether
there will be any more proposals, and if there will be more proposals,
what the subsequent proposal scheme will be.

5.7.2 Debugging Metropolis-Hastings

Designing good proposal schemes is more of an art than a science
and can be quite challenging. Finding a good proposal scheme for
the movies example was quite time consuming. It also required im-
plementing the SwitchingFlip element class, which, as we will see be-
low, is not difficult. Unfortunately, a problem with Metropolis-Hastings
algorithms is that they can be quite difficult to debug. Developing
good methodologies and tools for debugging Metropolis-Hastings is
an important research problem. For now, Figaro provides a couple of
tools that may be useful to users.

The Metropolis-Hastings class has a debug variable, which by de-
fault is set to false. If you set it to true, you get debugging output
when you run the algorithm. This includes every element that is pro-
posed or updated and whether each proposal is accepted or rejected.
The debugging output uses the names of elements, so to make use of
it, you need to give the elements you are interested in a name.

In addition, if you have a Metropolis-Hastings object mh, you can
define an initial state by setting the values of elements. Then call
mh.test and provide it a number of samples to generate. It will re-
peatedly propose a new state from the initial state and either accept
or reject it, restoring to the original state each time. You can provide
a sequence of predicates, and it will report how often each predicate
was satisfied after one step of Metropolis-Hastings from the initial
state. You can also provide a sequence of elements to track, and it
will report how often each element is proposed. For example, in the
movies example, you could set the initial state to be one in which
exactly one appearance is awarded and test the fraction of times this
condition holds after one step.

5.8 gibbs sampling markov chain monte carlo

Figaro also provides another Markov chain Monte Carlo algorithm
known as Gibbs sampling. Gibbs sampling is an algorithm that tra-
ditionally will iterate through all the variables in the model, and
sample each variable conditioned on the rest of the model (or the
Markov blanket, as that is all that is needed). By successively sam-
pling variables in the model in this manner, the Markov chain even-
tually reaches convergence, and subsequent samples from the model
are from the joint distribution defined by the model.
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Figaro’s Gibbs sampling is similar to traditional implementations
of Gibbs sampling except for two key differences: It is implemented
on a factor graph, and blocks of variables are sampled at each itera-
tion instead of a single variable (this is required because of chains).
This means that when Gibbs sampling is run, factors are generated
based on the model; continuous variables are sampled into factors.
Hence, Gibbs samples in Figaro is really a mix between a factored
algorithm and a sampling algorithm.

To create an anytime Gibbs sampling algorithm, use:

import com.cra.figaro.language._

import com.cra.figaro.algorithm.factored.gibbs._

val e1 = Select(0.25 -> 0.3, 0.25 -> 0.5, 0.25 -> 0.7, 0.25

-> 0.9)

val e2 = Flip(e1)

val e3 = If(e2, Select(0.3 -> 1, 0.7 -> 2), Constant(2))

e3.setCondition((i: Int) => i == 2)

val gs = Gibbs(e2)

Gibbs sampling takes three additional optional arguments. The first
represents the burn-in, which is the number of steps the algorithm
goes through before collecting samples, the second is the number of
steps between samples, and the final is the method of creating blocks
(which most people do not need to change). The default burn-in is
0, while the default interval is 1. These arguments appear before the
query elements.

To use a one-time (i.e., non-anytime) Gibbs sampling algorithm,
simply provide the number of samples as the first argument. Gibbs
sampling also provides a one-line query shortcut.

5.9 probability of evidence algorithms

The previous three algorithms all computed the conditional proba-
bility of query variables given evidence. Sometimes we just want to
compute the probability of evidence. Since there is the potential for
ambiguity here, Figaro is careful to define what constitutes evidence
for computing probability of evidence. Conditions and constraints of-
ten constitute evidence. Sometimes, however, they can be considered
to be part of the model specification. Consider, for example, the con-
straint on pairs of friends that they share the same smoking habits
(this is part of the model definition, not evidence).

For this reason, Figaro allows the probability of evidence to be com-
puted in steps. To compute the probability of conditions and con-
straints that are in the Figaro program, you can use:
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import com.cra.figaro.language._

import

com.cra.figaro.algorithm.sampling.ProbEvidenceSampler

val alg = new ProbEvidenceSampler(universe) with

OneTimeProbEvidenceSampler { val numSamples = n }

alg.start()

where n is an integer indicating number of samples for one-time
sampling. To retrieve the probability of the evidence, you simply call
alg.probEvidence.

If you want to compute the probability of additional evidence, in
addition to the conditions and constraints in the program, you can
pass this additional evidence as the second argument to new ProbEvid-

enceSampler. This argument takes the form of a list of NamedEvidence
items, where each item specifies a reference and evidence to apply to
the element pointed to by the reference. For example, you could sup-
ply the following list as the second argument to ProbEvidenceSampler.

List(NamedEvidence("f", Observation(true)),

NamedEvidence("u", Observation(0.7)))

ProbEvidenceSampler will then compute the probability of all the
evidence, both the named evidence and the existing evidence in the
program. It does this by temporarily asserting the named evidence,
running the probability of evidence computation, and then retracting
the named evidence.

If you don’t want to include the existing conditions and constraints
in the program in the probability of evidence calculation, there are
four ways to proceed. Each method is more verbose than the previous
but provides more control. The simplest is to use:

ProbEvidenceSampler.computeProbEvidence(n, namedEvidence)

This takes care of running the necessary algorithms and returns the
probability of the named evidence, treating the existing conditions
and constraints as part of the program definition. You can also use
the following:

val alg = ProbEvidenceSampler(n, namedEvidence)

alg.start()

This method enables you to control when to run alg, and also
to reuse alg for different purposes. The final two methods explic-
itly compute probability of the conditions and constraints in the pro-
gram, which becomes the denominator for subsequent probability of
evidence computations. The ProbEvidenceSampler class provides a
method called probAdditionalEvidence that creates a new algorithm
that uses the probability of evidence of the current algorithm as de-
nominator. You could proceed as follows:
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val alg1 = new ProbEvidenceSampler(universe) with

OneTimeProbEvidenceSampler { val numSamples = n }

alg1.start()

val alg2 = alg1.probAdditionalEvidence(namedEvidence)

alg2.start()

The major advantage of this method is that you can call alg1.prob-
AdditionalEvidence multiple times with different named evidence
without having to repeat the denominator computation. The final
method, which provides maximum control, is:

val alg1 = new ProbEvidenceSampler(universe) with

OneTimeProbEvidenceSampler { val numSamples = n1 }

alg1.start()

val alg2 = new ProbEvidenceSampler(universe) with

OneTimeProbEvidenceSampler { val numSamples = n2 }

alg2.start()

In this example, a different number of samples is used for the initial
denominator calculation and the subsequent probability of evidence
calculation.

There is also an anytime version of the probability of evidence al-
gorithm forward sampling algorithm. To create one, use:

new ProbEvidenceSampler(universe) with

AnytimeProbEvidenceSampler

For the methods that require you to specify the number of sam-
ples n, replace n with t, where t is a long value indicating the num-
ber of milliseconds to wait while computing the denominator (and
also while computing the probability of the named evidence for the
computeProbEvidence shorthand method).

Additionally, the probability of evidence can be computed using
algorithms like importance sampling, belief propagation and particle
filtering. Examples are shown for the simple model below:

val universe = Universe.createNew()

val u = Uniform(0.0,0.2,0.4,0.6,0.8,1.0)("u", universe)

val condition = (d: Double) => d < 0.4

val evidence = List(NamedEvidence("u",

Condition(condition)))

This model defines a uniform with six outcomes, and a condition
having two satisfying outcomes.

With belief propagation, we compute the probability of evidence
with and without the condition and divide.
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val bp1 = BeliefPropagation(10, u)(universe)

bp1.start

bp1.stop

val withoutCondition = bp1.computeEvidence()

bp1.kill()

universe.assertEvidence(evidence)

bp2.start

bp2.stop

val withCondition = bp2.computeEvidence()

bp2.kill()

val e1 = withConditionwithoutCondition

For importance sampling, the evidence is provided as an argument
to the computeProbEvidence method.

val importance = Importance(100000, u)

importance.start()

importance.stop()

val e2 = importance.probabilityOfEvidence(evidence)

In particle filtering, the probability of evidence at the current time
step can be computed using probEvidence().

val pf = ParticleFilter(universe, t, 10000)

pf.start()

val condition = (d: Double) => d < 0.4

val evidence = List(NamedEvidence("u",

Condition(condition)))

pf.advanceTime(evidence)

val e3 = pf.probEvidence()

pf.stop()

pf.kill()

e3

The result of each computation is approximately .333.
println(e1 + " " + e2 + " " + e3) yields:

0.3333333333333333 0.3338586042039474 0.3269

5.10 computing the most likely values of elements

Rather than computing a probability distribution over the values of
elements given evidence, a natural question to ask is "What are the
most likely values of all the elements given the available evidence?"
This is known as computing the most probable explanation (MPE) of
the evidence. There are two ways to compute MPE: (1) Variable elim-
ination, and (2) Simulated annealing. An example that shows how to
compute the MPE using variable elimination is:



5.10 computing the most likely values of elements 44

import com.cra.figaro.language._

import com.cra.figaro.algorithm.factored._

val e1 = Flip(0.5)

e1.setConstraint((b: Boolean) => if (b) 3.0; else 1.0)

val e2 = If(e1, Flip(0.4), Flip(0.9))

val e3 = If(e1, Flip(0.52), Flip(0.4))

val e4 = e2 === e3

e4.observe(true)

val alg = MPEVariableElimination()

alg.start()

println(alg.mostLikelyValue(e1)) // should print true

println(alg.mostLikelyValue(e2)) // should print false

println(alg.mostLikelyValue(e3)) // should print false

println(alg.mostLikelyValue(e4)) // should print true

Computing the most likely value of an element can also be accom-
plished using simulated annealing, which is based on the Metropolis-
Hastings algorithm. The main idea behind simulated annealing is to
sample the space of the model and make transitions to higher proba-
bility states of the model. Over many iterations, the algorithm slowly
makes it less likely that the sampler will transition to a lower prob-
ability state than the one it is already in, with the intent of slowly
moving the model towards the global maximum probability state.

Central to this idea is the cooling schedule of the algorithm; this de-
termines how fast the model converges toward the most likely state.
A faster schedule means the algorithm will quickly converge upon a
high probability state, but since it allows for little exploration of the
model space the risk that algorithm gets stuck in a local maxima is
high. Conversely, a slow schedule allows for a more thorough explo-
ration of the model space but can take long to converge.

In Figaro, the Metropolis-Hastings based simulated annealing is in-
stantiated very similarly to the normal MH algorithm. Consider an
example of using simulated annealing on the smokers model pre-
sented earlier:

This example can be
found in Anneal-
ingSmokers.scala

import com.cra.figaro.language._

import com.cra.figaro.library.compound.^^

import com.cra.figaro.algorithm.sampling.ProposalScheme

import

com.cra.figaro.algorithm.sampling.MetropolisHastingsAnnealer

import com.cra.figaro.algorithm.sampling.Schedule

class Person {

val smokes = Flip(0.6)

}
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val alice, bob, clara = new Person

val friends = List((alice, bob), (bob, clara))

clara.smokes.observe(true)

def smokingInfluence(pair: (Boolean, Boolean)) =

if (pair._1 == pair._2) 3.0; else 1.0

for { (p1, p2) <- friends } {

^^(p1.smokes, p2.smokes).setConstraint(smokingInfluence)

}

val mhAnnealer =

MetropolisHastingsAnnealer(ProposalScheme.default,

Schedule.default(3.0))

The second argument is an instance of a Schedule class (similar to
a ProposalScheme), and contains the method that slowly moves the
sampler towards a more likely state. It is defined as:

class Schedule(sch: (Double, Int) => Double) {

def temperature(current: Double, iter: Int) =

sch(current, iter)

}

This class takes in a function from a tuple of (Double, Int) to a
Double. At each iteration (after any burn-in), the simulated annealing
will call schedule.temperature with the current transition probabil-
ity and iteration count. The schedule will then return a new transition
probability that will be used to accept or reject the new sampler state.
The default schedule is defined as:

def default(k: Double = 1.0) = new Schedule((c: Double, i:

Int)

=> math.log(i.toDouble+1.0)/k)

To run simulated annealing, one simply calls run() as in a normal
Metropolis-Hastings algorithm. Once the algorithm has completed,
one can retrieve the most likely value of an element by calling mhAnneal-

er.mostLikelyValue(element). Note that when the algorithm finds
the most probable state of the model, it records the values for each
active element. Therefore, queries on the most likely values of tempo-
rary elements that are not part of the optimal state of the model may
fail.

5.11 reasoning with dependent universes

Earlier we saw that variable elimination does not work for all mod-
els. One way to get around this in some cases is to use dependent
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universes. As an example, consider a problem in which we have a
number of sources and a number of sample points, and we want to
associate each point with its source. The distance between a point and
a source depends on whether it is its correct source or not. We can
capture this situation with the following model:

import com.cra.figaro.language._ This example can be
found in
Sources.scala

import com.cra.figaro.algorithm.factored._

class Source(val name: String)

abstract class Sample(val name: String) {

val fromSource : Element[Source]

}

class Pair(val source: Source, val sample: Sample) {

val isTheRightSource =

Apply(sample.fromSource, (s: Source) => s == source)

val rightSourceDistance = Normal(0.0, 1.0)

val wrongSourceDistance = Uniform(0.0, 10.0)

val distance =

If(isTheRightSource, rightSourceDistance,

wrongSourceDistance)

}

Now, suppose that each sample has a set of potential sources, and
at most one sample can come from each source. This creates a con-
straint over the samples that could come from each source. First, we
create some sources, samples, and pair them up.

val source1 = new Source("Source 1")

val source2 = new Source("Source 2")

val source3 = new Source("Source 3")

val sample1 = new Sample("Sample 1") {

val fromSource = Select(0.5 -> source1, 0.5 -> source2)

}

val sample2 = new Sample("Sample 2") {

val fromSource = Select(0.3 -> source1, 0.7 -> source3)

}

val pair1 = new Pair(source1, sample1)

val pair2 = new Pair(source2, sample1)

val pair3 = new Pair(source1, sample2)

val pair4 = new Pair(source3, sample2)

Note that Sample is an abstract class, so when we create particu-
lar samples we must provide a value for fromSource. Now we can
enforce the constraint as follows:
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val values = Values()

val samples = List(sample1, sample2)

for {

(firstSample, secondSample) <- upperTriangle(samples)

sources1 = values(firstSample.fromSource)

sources2 = values(secondSample.fromSource)

if sources1.intersect(sources2).nonEmpty

} {

^^(firstSample.fromSource,

secondSample.fromSource).addCondition( (p: (Source, Source))

=> p._1 != p._2)

}

The first thing we do is create a Values object, because we will need
to repeatedly get the possible sources of each sample. The for com-
prehension first generates all pairs of elements in the samples list in
which the first element precedes the second in the list (upperTriangle
is in the Figaro package) . It then sees if the two samples have a pos-
sible source in common. If they do, it imposes a condition on the pair
of sources of the two samples saying that they must be different. We
go through this process to avoid setting a constraint on the source
variables of all pairs of samples, which would lead them to be one
large clique.

Depending on the structure of which samples can come from which
sources, we might want to solve this problem using variable elimina-
tion. Unfortunately, the distances are defined by atomic continuous
elements that cannot be used in variable elimination. The solution is
to use dependent universes. We create a universe for each Pair as
follows:

class Pair(val source: Source, val sample: Sample) {

val universe = new Universe(List(sample.fromSource))

val isTheRightSource =

Apply(sample.fromSource, (s: Source) => s ==

source)("isTheRightSource", universe)

val rightSourceDistance = Normal(0.0,

1.0)("rightSourceDistance", universe)

val wrongSourceDistance = Uniform(0.0,

10.0)("wrongSourceDistance", universe)

val distance =

If(isTheRightSource, rightSourceDistance,

wrongSourceDistance)("distance", universe)

}

Observe that each element created in the Pair class is added to the
universe of the Pair, not the universe that contains sample.fromSource.
Now, we can use variable elimination and condition each of the source
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assignment on the probability of the evidence in the corresponding
dependent universe. To do this, we pass a list of the dependent uni-
verses as extra arguments to variable elimination, along with a func-
tion that provides the algorithm to use to compute the probability of
evidence in a dependent universe, as follows:

val evidence1 = NamedEvidence("distance", Condition((d:

Double) => d > 0.5 && d < 0.6))

val evidence2 = NamedEvidence("distance", Condition((d:

Double) => d > 1.5 && d < 1.6))

val evidence3 = NamedEvidence("distance", Condition((d:

Double) => d > 2.5 && d < 2.6))

val evidence4 = NamedEvidence("distance", Condition((d:

Double) => d > 0.5 && d < 0.6))

val ue1 = (pair1.universe, List(evidence1))

val ue2 = (pair2.universe, List(evidence2))

val ue3 = (pair3.universe, List(evidence3))

val ue4 = (pair4.universe, List(evidence4))

def peAlg(universe: Universe, evidence:

List[NamedEvidence[_]]) = () =>

ProbEvidenceSampler.computeProbEvidence(100000,

evidence)(universe)

val alg = VariableElimination(List(ue1, ue2, ue3, ue4),

peAlg _, sample1.fromSource)

5.12 abstractions

An alternative way to dealing with elements with many possible val-
ues, such as continuous elements, is to map the values to a smaller
abstract space of values. An element can have pragmas, which are in-
structions to algorithms on how to deal with the element. The only
pragmas currently defined are abstractions, but more might be de-
fined in the future. To add an abstraction to an element, use the ele-
ment’s addPragma method.

Let us build abstractions in steps. We start with a PointMapper.
A point mapper defines a map method that takes a concrete point
and a set of possible abstract points and chooses one of the abstract
points. A natural point mapper for continuous elements maps each
continuous value to the closest abstract point.

Next, we define an AbstractionScheme. In addition to being a point
mapper, an abstraction scheme also provides a select method that
takes a set of concrete points and a target number of abstract points
and chooses a set of abstract points from the concrete points of the
given size. A default abstraction scheme is provided for continuous
elements that provides a uniform discretization of the given concrete
values. More intelligent abstraction schemes that perform other dis-
cretizations can easily be developed.
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An Abstraction consists of a target number of abstract points, a
desired number of concrete points per abstract point from which to
generate the abstract points (which defaults to 10), and an abstraction
scheme. An example of using abstractions to discretize continuous
elements is as follows:

import com.cra.figaro.language._

import com.cra.figaro.library.atomic.continuous.Uniform

import com.cra.figaro.library.compound.If

import com.cra.figaro.algorithm.AbstractionScheme,

Abstraction

import com.cra.figaro.algorithm.factored._

val flip = Flip(0.5)

val uniform1 = Uniform(0.0, 1.0)

val uniform2 = Uniform(1.0, 2.0)

val chain = If(flip, uniform1, uniform2)

val apply = Apply(chain, (d: Double) => d + 1.0)

apply.addConstraint((d: Double) => d)

uniform1.addPragma(Abstraction(10))

uniform2.addPragma(Abstraction(10))

chain.addPragma(Abstraction(10))

apply.addPragma(Abstraction(10))

val ve = VariableElimination(flip)

ve.start()

println(ve.probability(flip, true)) // should print about

0.4

It is up to individual algorithms to decide whether and to use a
pragma such as an abstraction. For example, importance sampling,
which has no difficulty with elements with many possible values,
ignores abstractions. The process of computing ranges, which is a
subroutine of variable elimination and can also be used in other algo-
rithms, does use abstractions.

The process used by range computation to determine the range of
an abstract element is as follows. First it generates concrete values,
then selects the abstract values from the concrete values. If the ele-
ment is atomic, it generates the concrete points directly. The number
of concrete values is equal to the number of abstract values times the
number of concrete values per abstract value, both of which can be
specified. If the element is compound, it uses the sets of the values of
the element’s arguments and the definition of the element to produce
concrete values. Remember that the sets of values of the arguments
(e.g., for the apply in the above example) may themselves be the result
of abstractions. Once it has generated the concrete points, the range
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computation calls the select method of the abstraction scheme asso-
ciated with the element to generate the abstract values.

5.13 reproducing inference results

Running inference on a model is generally a random process, and
performing the same inference repeatedly on a model may produce
slightly different results. This can sometimes make debugging dif-
ficult, as bugs may or may not be encountered, depending on the
random values that were generated during inference. For that reason,
Figaro has the ability to generate reproducible inference runs.

All elements in Figaro use the same random number generator to
retrieve random values. This can be accessed by importing the util Fi-
garo package and using the value random, which is Figaro’s random
number generator. For example, the generateRandomness() function
in the Select element is:

import com.cra.figaro.util._

def generateRandomness() = random.nextDouble()

To reproduce the results of an inference algorithm, you must set
the seed in the random number generator. Repeated runs of the same
algorithm with the same seed will then be identical, making debug-
ging much easier since errors can be tracked between runs. To set
the seed, you import the util package, and simply call setSeed(s:

Long). To retrieve the current random number generator seed, one
calls getSeed().



6
D Y N A M I C M O D E L S A N D F I LT E R I N G

Figaro provides constructs to create dynamic probabilistic programs
that describe a domain that changes over time. All the power of the
language can be used in creating dynamic programs. A dynamic
probabilistic program consists of two parts: (1) an initial model, which
is a universe, describing the distribution over the initial state, and (2)
a transition model, which is a function from a universe representing
the distribution at one time point to a universe representing the distri-
bution at the next time point. The transition model may also option-
ally take a static universe as an input that represents static, non–time
dependent variables.

The following code shows the typical method for creating initial
and transition models:

val initial = Universe.createNew()

val f = Flip(0.2)("f", initial)

def trans(previousUniverse: Universe): Universe = {

val newU = Universe.createNew()

val b = previousUniverse.get[Boolean]("f")

val f = If(b, Flip(0.8), Flip(0.3))("f", newU)

newU

}

The first line creates a new universe for the initial model and as-
signs it to a variable so that we can use it later. We then define an
element to appear in the initial model and give it the name "f". When
a name is given explicitly to an element, you also need to specify the
universe, which in this case is the initial universe.

We then define the transition model. It takes the previous uni-
verse as argument and returns a universe. The first thing it does
is create a new universe, which is returned at the end of defining
the transition model. It then creates an element named "f" that de-
pends on the previous value of "f". The previous value of "f" is the
value of the element named "f" in the previous universe. Note that
we can give this new element the same name as the previous ele-
ment since they are part of different universes. We get at this element
using previousUniverse.get[Boolean]("f"). Essentially, when ele-
ments in different universes at different time points have the same
name, they represent the state of the same variable at different points
in time. Using this procedure, we can create any manner of depen-
dency between the previous state and the current state by referring
to elements in the previous universe by reference.

51
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There are two dynamic reasoning algorithms available in Figaro: (1)
Particle filtering, and (2) factored frontier.

6.0.1 Particle filtering

To create the particle filter, use:

val pf = ParticleFilter(initial, trans, numParticles)

where initial is the initial universe, trans is the transition model
(a function from Universe => Universe), and numParticles is the
number of particles the algorithm should produce at each time step.

One tricky aspect about using a particle filter is that the universes
are produced by a function, so it is hard to get a handle on them
to observe evidence. This problem is solved by the use of named
evidence, so we can refer to the correct element without having a
handle on the specific universe.

To tell the particle filter to create the initial set of particles from the
initial model, we call the start method. The filter then waits until it is
told it is time to move to the next time step. To tell the particle filter to
move forward in time and tell it the evidence at the new time point,
we call the advanceTime method, which takes a list of NamedEvidence
as argument. For example:

pf.start()

pf.advanceTime(List(NamedEvidence("f2",

Observation(true))))

pf.advanceTime(List(NamedEvidence("f2",

Observation(false))))

This creates the initial particles and advances two time steps with
different evidence at each time.

The query methods provided for a filtering algorithm are currentDi-
stribution, currentExpectation, and currentProbability. These are
similar to the corresponding methods for algorithms that compute
conditional probabilities for static models, except that they return the
distribution, expectation, or probability at the current point in time.
For example:

pf.start()

pf.advanceTime(List(NamedEvidence("f2",

Observation(true))))

pf.advanceTime(List(NamedEvidence("f2",

Observation(false))))

pf.currentProbability("f1", true)

returns the probability that the element named "f1" is true after two
time steps, given that "f2" was true in the first time step and false in
the second.
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There are a couple of implementation notes about particle filter-
ing that a user should be aware of. First, since particle filtering es-
timates probabilities of elements using many particles, it can get ex-
pensive (memory wise) to store the state estimates for every element
in the model. Therefore, the states of only named elements are tracked
through time. This means that queries to filter for an element proba-
bility or expectation must be on named elements. In addition, because
filtering tracks estimates through time, we want to free up memory
from old universes that are no longer used. To accomplish this, when
advanceTime is called, all named elements from the previous universe
are copied as constants to a new, temporary universe. The temporary
universe is then used in the transition function, allowing the real pre-
vious universe to be freed while still letting the new universe use the
correct values from the old universe.

There is also a parallel version of particle filtering that uses Scala’s
built in parallel collections. The interface to use parallel particle filter-
ing is similar to the original algorithm with a few exceptions. First,
this version uses a model generator, which is a function that produces
a universe (particle filtering is run in parallel on separate but identi-
cal universes). Second, the user must indicate the number of threads
to use.

6.0.2 Factored frontier

Factored frontier is a dynamic reasoning algorithm that uses factors
instead of sampling. To create an instance of factored frontier, use:

val ff = FactoredFrontier(static, initial, transition,

numIterations)

where static is a universe with the static variables, initial is
the initial universe, transition is the transition model (a function
from (Universe, Universe) => Universe), and numIterations is the
number of internal BP iterations that should be performed at each
time step (as BP is used internally in the algorithm). Optionally, an
anytime version of BP can be used instead, where the numIterations

is replaced by stepTimeMillis, a long that indicates how long to run
BP at each time step.

The same restrictions and behaviors for continuous variables that
apply to BP also apply to factored frontier. The interfaces for advanc-
ing time, applying evidence, and querying the model are the same
for factored frontier and particle filtering. As in particle filtering, only
named elements are propagated to the next time step for building the
model and querying.
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D E C I S I O N S

Figaro also contains the ability to solve and query structured decision
problems. These types of models, also known as influence diagrams,
are generalizations of Bayesian networks that contain additional deci-
sion and utility variables. Figaro generalizes ordinary decision mod-
els by allowing the information on which a decision is based to be
an arbitrary data structure. Also, the full power of the programming
language is available to build decision models. However, Figaro does
require that the possible values of the decision variables themselves
be discretely enumerated.

In this section, we first give a very brief introduction into decision
models and decision-making. We then provide a small example of
decision-making in Figaro. We also delve deeper into the decision-
making implementation in Figaro. Finally, we discuss the different
ways that decision-making can be performed on single and multiple
decision models.

7.1 decision models

Decision models are generalizations of Bayesian networks that con-
tain two additional variable types. The first is a decision variable,
which represents a set of actions that a decision-maker can perform.
The parents of a decision variable represent the information available
to the decision-maker at the time of the decision. Decision models
also contain utility variables, which represent some gain or loss in
the model that directly or indirectly depends upon some previous
decisions or random variables.

The purpose of a decision model is usually to compute an optimal
policy for each decision in the model, where a policy defines what
action a decision-maker should take for every possible value of the
decision’s parent variable(s). An optimal policy is when every action
specified by the policy for each value of the parents is optimal with
respect to some measure. To measure the optimality of an action, Fi-
garo uses the maximum expected utility of the action. That is, for
each value of a decision’s parents, Figaro determines the action that
will result in the highest expected utility of the model.
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7.2 basic example

Using Figaro’s decision-making capabilities is generally quite simple.
For example, consider the code for a simple decision model shown
below:

This example can be
found in
SingleDecision.scala

import com.cra.figaro.language._

import com.cra.figaro.algorithm.decision._

import com.cra.figaro.library.compound._

import com.cra.figaro.library.decision._

val market = Select(0.5 -> 0, 0.3 -> 1, 0.2 -> 2)

val survey = CPD(market,

0 -> Select(0.6 -> 0, 0.3 -> 1, 0.1 -> 2),

1 -> Select(0.3 -> 0, 0.4 -> 1, 0.3 -> 2),

2 -> Select(0.1 -> 0, 0.4 -> 1, 0.5 -> 2))

val found = Decision(survey, List(true, false))

def valueFcn(f: Boolean, m: Int): Double = {

if (f) {

m match {

case 0 => -7.0

case 1 => 5.0

case 2 => 20.0

}

} else {

0.0

}

}

val value = Apply(found, market, valueFcn)

val alg = DecisionVariableElimination(List(value), found)

alg.start()

alg.setPolicy(found)

The first four lines import the packages needed for decision models.
The elements market and survey are random variables in a normal
Figaro model. We create a decision variable called found that uses
the element survey as a parent, with the possible actions of the deci-
sion as true or false. The element named value is a utility variable
that computes a Double conditioned upon the action of the decision
(found) and the current value of the market element. It uses the func-
tion valueFcn to compute current utility. Finally, we use Figaro’s deci-
sion variable elimination to compute an optimal policy for the found

decision, and set the policy in the found element when the algorithm
completes so that it can be used for querying.
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7.3 decisions in figaro

As can be seen in the previous section, decision-making can be im-
plemented in Figaro with little effort. Decisions are created using the
Decision[T,U] element. The Decision[T,U] element actually inher-
its from Chain; that is, a decision is simply an element that uses an
Element[T] as a parent, and generates an Element[U] as the action. A
new decision is instantiated simply as:

Decision(Flip(0.7), List(0, 1, 2))

where the first argument is the parent of the decision, and the sec-
ond argument is a list of the possible actions of the decision. The
possible actions must always be finite and discrete. However, the par-
ent of a decision may be an element over any Scala type. So, we could
imagine making a decision based on a social network or a DNA se-
quence. One thing to note is that decision elements only support
single parent decisions. However, multiple parent decisions can be
easily created by grouping several parent elements into an element
tuple. There are various other ways to instantiate a decision that can
be found in the code for the Decision class.

Also, the no-forgetting assumption in decision models is not explic-
itly enforced in Figaro, hence Limited Memory Influence Diagrams
(LIMIDs) can be represented in Figaro, though there is not an explicit
LIMID reasoning algorithm implemented.

In decision models, there are also variables that represent the utility
of the model. In Figaro, there is no need to explicitly create a utility
element; this can be easily done using the Apply element, as shown in
the example above. Utility elements must be of type Element[Double].

A decision is similar to a chain, but unlike the chain, a decision
element can change its functionality after an optimal policy has been
computed for the decision. Most of the time, setting the policy of a
decision can be done simply through the algorithm that computes
the optimal policy. However, a user may manually set the policy of
a decision element by calling the setPolicy function of the decision,
defined as:

def setPolicy(new_fcn: (T => Element[U])): Unit

That is, setting the policy of a decision is just providing a new func-
tion from the value of a parent to an Element[U]. Users can also get
the policy for a specific value of the parent by calling getPolicy(p:

T): Element[U]. Various other ways to set the policy can also be
found in the com.cra.figaro.algorithm.decision package.
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7.4 single decision models and policy generation

Single decision models can be created in Figaro by simply inserting a
Decision element into the model. Once the model has been created,
the goal is usually to compute the optimal policy for the decision that
maximizes the expected utility of the model. This is done as two ex-
plicit steps in Figaro; computing the expected utility of each parent
and decision pair, then determining the decision that has the maxi-
mum expected utility for each parent value. The policy is then set as
a function that returns the maximum expected utility decision as a
Constant for any parent value. This policy computation is performed
using one of Figaro’s built-in inference algorithms. Two alternative
methods are provided. One is generally used when the support of
the parent is finite, the other when it is infinite. However, there are
some cases where the support is finite but very large and the infinite
support method is preferable. Alternatively, for some distributions
with infinite support, like Poisson or Geometric, only a small number
of values are likely, and the finite support method can be used.

7.4.1 Finite parent support

In this case, computing the optimal policy can be performed using the
variable elimination, importance sampling, or Metropolis-Hastings al-
gorithms. In addition to the normal parameters that each algorithm
takes (as explained in previous sections), the decision version of these
algorithms also takes a List[Element[Double]] that indicates the util-
ity nodes in the model. The target of the algorithm is always the deci-
sion you wish to compute an optimal policy for. To find the optimal
policy for discrete decisions, you simply instantiate one of the algo-
rithms, for example:

val alg = DecisionVariableElimination(List(value), found)

val alg = DecisionImportanceSampling(10000, List(value),

found)

val alg = DecisionMetropolisHastings(10000,

ProposalScheme.default, 1000, List(value), found)

Where List(value) is the list of utilities in the model, and found is
the decision. To compute the optimal policy, you simple start the al-
gorithm, i.e., alg.start(). One the algorithm has completed running,
you can call alg.setPolicy(found), which will set the optimal policy
in the Decision element that was computed from the algorithm.

7.4.2 Infinite parent support

When the parent(s) of a decision have infinite support, it is more
difficult to compute an exact optimal policy. This is because it is not
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possible to compute the maximum expected utility action for each
value of the parent since the range of the parent is infinite. In such a
case, we use Figaro’s sampling algorithms to compute an approximate
optimal policy that attempts to provide a maximal expected utility
decision for any possible value of the parent. Since we use sampling
algorithms to compute the approximation, only importance sampling
and Metropolis-Hastings can be used with continuous decisions.

Instantiating a decision with infinite parent support is similar to
finite parent support, except that one must explicitly instantiate a
NonCachingDecision, which is based on NonCachingChain:

NonCachingDecision(Normal(0.0, 1.0), List(0, 1, 2))

The creation of the algorithm and setting of the policy is the same
as discrete decisions. Internally in Figaro, however, there are major
differences between the implementation of policies for discrete and
continuous decisions.

When a sampling algorithm is run on a continuous decision, the
algorithm records the utility of the model for each parent and action
value that is randomly sampled. When setPolicy is called on the
algorithm, all of the generated samples are stored in the decision
element. That is, no optimal policy is generated when setPolicy is
called; the optimal action to take for a parent value is only computed
when the model is queried for a decision with a particular parent
value.

When the decision is queried, i.e., getPolicy(p: T) or generate()

is invoked on the decision element, the optimal action for parent
value p is computed using a nearest-neighbor method. The N clos-
est samples to the parent value are retrieved from the stored samples,
the expected utility is computed for each possible action, and the
maximum is chosen as the optimal action for this parent value.

Since nearest-neighbor is used to find nearby parent values, a dis-
tance metric must also be defined for the parent type T. To use an
Element[T] as the parent to a decision, the type T must implement
the Distance[T] trait, defined as:

trait Distance[T] {

def distance(that : T) : Double

}

This trait just defines a function that computes a Double distance
between two values of the type. For built-in types (Double, Int and
Boolean), we use Scala’s implicit conversion mechanism to automat-
ically handle conversion to a class that implements the Distance[T]

interface so that no changes are needed by the user. For examples, the
Double implementation is:
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case class DoubleDistance(value : Double) extends

Distance[Double] {

def distance(that : Double) = math.abs(value-that)

}

implicit def double2Dist(x : Double) = DoubleDistance(x)

See the Distance class for more details on default conversions of
basic types and parents that are element tuples. For user defined
classes, all the user needs to do is implement a distance function in
the Distance trait, and the type can be used as a parent to a decision
element. For instance, we can use an element over the range of graphs
as a parent to a decision by declaring the dGraph class as such:

class dGraph() extends Distance[dGraph] {

...

def distance(that: dGraph): Double = {

...

}

}

Since the number of samples generated from the algorithm may be
large, and the optimal policy method retrieves the nearest neighbors
for every parent value that is queried from the decision, computing
the optimal action can be quite slow. To ameliorate this slowdown,
Figaro stores the samples in an index. The default implementation is
a VP-index, used for metric distances. Different indices can be created
an integrated as well. See the Index and DecisionPolicy classes for
more information.

7.5 multiple decision models and policy generation

Figaro also supports for multiple decision models using a backward
induction algorithm. In this algorithm, the optimal policies are com-
puted in reverse order on a set of partially ordered decision variables.
To create policies for multiple decision models, a user uses the multi-
decision versions of the algorithms:

A multiple decision
example can be
found in
MultiDecision.scala

val alg = MultiDecisionVariableElimination(List(utility1,

utility2), decision1, decision2)

val alg = MultiDecisionImportance(10000, List(utility1,

utility2), decision1, decision2)

val alg = MultiDecisionMetropolisHastings(10000, maker:

ProposalMakerType, 1000, List(utility1, utility2),

decision1, decision2)

Note that the interface for the MultiDecisionMetropolisHastings

is different than the DecisionMetropolisHastings algorithm. MultiDec-
isionMetropolisHastings needs a ProposalMakerType, since inside
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the algorithm, DecisionMetropolisHastings is run for each decision.
The ProposalMakerType is defined as:

type ProposalMakerType = (Universe, Element[_]) =>

ProposalScheme

Only the one-time versions of the decision algorithms can be used
for multi-decision models. To compute the optimal policy for every
decision in the model, the user simply does, for example:

val propmaker = (mv: Universe, e: Element[_]) =>

ProposalScheme.default(mv)

val alg = MultiDecisionMetropolisHastings(200000, propmaker,

20000, List(value, cost), test, found)

alg.start()

The ProposalMaker for this small example just uses the default pro-
posal for each instantiation of DecisionMetropolisHastings for a de-
cision. However, we could also change the proposal scheme for each
decision. There is also no need to call alg.setPolicy, since the multi-
decision algorithm will set the optimal policy for each decision as it
is needed for backward induction. Figaro will automatically compute
the partial order of the decisions that are in the parameter list.
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L E A R N I N G M O D E L PA R A M E T E R S F R O M D ATA

Figaro provides support for learning model parameters from data. In
this section, a special type of compound element will be presented
which allows a distribution to be learned from observed evidence.
Details are given about the algorithm Figaro provides for learning
parameters. Lastly, an example using parameters and learning algo-
rithms to determine the fairness of a set of die rolls is presented.

8.1 parameters and parameterized elements

This section discusses elements which are learnable parameters. For
clarity, a distinction should be made on the meaning of the word
parameter in this context. This is different from a method parameter
or Scala type parameter. In this section, we use parameter to refer to a
Figaro element which can be learned from data. There are currently
two such types of parameters in Figaro: (1) Beta, and (2) Dirichlet.

A customary illustration of parameter learning is to consider the
outcomes of a coin flip and determine whether or not the coin is fair.
In the case of a Flip element (which is a Bernoulli distribution), the
conjugate prior distribution is a Beta distribution. If the coin is not
fair, we would expect a prior distribution to have a higher value of
alpha or beta (the shape variables of a Beta). First, we will create the
conjugate prior distribution of a Flip:

val fairness = Beta(1,1)

The element fairness is the parameter we will use to model the
bias of our coin. The creation of the parameter is no different than
Most importantly, we later use it to create a model learned from pa-
rameterized elements. Creation of a parameterized element is accom-
plished in exactly the same way as creating a compound element.

val f = Flip(fairness)

This element models a flip of a coin having the fairness speci-
fied by the beta parameter, using a value of true to represent heads
and false to represent tails. We have actually created an instance of
ParameterizedFlip, which is a special type of compound element.
A ParameterizedFlip is created simply by providing a Beta as the
argument to Flip.

By using a ParameterizedFlip, the evidence we observe on f can
be used to learn the value of fairness. Thus, the next step is to
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provide the data observed from flips of the coin. Values can be ob-
served just as with other elements, by using f.observe(true) or
f.observe(false). We could also use conditions or constraints. This example is

found in
FairCoin.Scala

As a more detailed example, suppose we have seen 24 heads and
62 tails. One way to represent this data is in a Scala sequence. Note
that for readability, the sequence is truncated here.

val data = Seq(’H’, ’H’, ’H’, ’T’, ’H’, ’H’, ’T’, ’H’, ...

The following block of Scala code will iterate through each of the
items in the sequence, create a Flip element using the parameter, and
observe true or false based on the side of the coin:

data zip model.trials foreach {

(datum: (Char, Flip)) => if (datum._1 == ’H’)

datum._2.observe(true) else datum._2.observe(false)

}

We have created a parameter, parameterized elements and consid-
ered a set of data. Note that each time a parameterize flip is created,
it is using the same Beta. It is now desirable to employ a learning
mechanism to determine the fairness of the coin, and to create a new
element corresponding to the learned value. This is possible by using
a learning algorithm.

8.2 expectation maximization

A learning algorithm can be used to determine the maximum a pos-
teriori estimate for parameter elements. Parameter elements have a
MAPValue which is set when the parameter is used as a target in a
learning algorithm. Presently, Figaro provides one learning algorithm,
expectation maximization, which uses existing Figaro algorithms to
estimate sufficient statistics. Recall that expectation maximization is
an iterative algorithm consisting of an expectation step and a maxi-
mization step. During the expectation step, an estimate is produced
for the sufficient statistics of the parameter. The estimates are then
used in the maximization step to find the most likely value of the pa-
rameter. This continues for a set number of iterations and converges
toward the true MAP value.

From a practical standpoint, learning a parameter with expectation
maximization is very simple. We need only provide the target param-
eter and, optionally, the number of iterations to the algorithm. The
default number of iterations is 10. We can also choose an inference al-
gorithm for estimating the sufficient statistics of the target parameters.
Currently, Metropolis Hastings, importance sampling, variable elim-
ination or belief propagation can be used for this purpose. Figaro’s
Generalized EM algorithm is used in the following way:
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val learningAlgorithm = EMwithMH(fairness)

learningAlgorithm.start

learningAlgorithm.kill

val coin = Flip(fairness.MAPValue)

println("The probability of a coin with this fairness

showing ’heads’ is: ")

println(coin.prob)

The line val learningAlgorithm = EMwithMH(fairness) creates an
EM algorithm which uses Metropolis Hastings to estimate sufficient
statistics. We could also have used EMwithBP(fairness) or EMwithImp-
ortance(fairness).

After the algorithm has finished running, we can create an element
learned from the parameter by using Flip(fairness.MAPValue). The
element coin is a Flip, where the probability of producing true is
determined from the data we observed above.

After running the program, we see:

The probability of a coin with this fairness showing ’heads’

is: 0.7159090909090909

We may want to make further explorations about the learned model.
For instance, if we wanted to know the probability that two flips of
this coin show the same side, we could use:

val t1 = Flip(fairness.MAPValue)

val t2 = Flip(fairness.MAPValue)

val equal = t1 === t2

We can then use an algorithm like variable elimination to determine
the probability that the coins show the same side:

val alg = VariableElimination(equal)

alg.start()

println("The probability of two coins which exhibit this

fairness showing the same side is: " +

alg.probability(equal, true))

alg.kill()

This results in the following output:

The probability of two coins which exhibit this fairness

showing the same side is: 0.5932334710743803
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8.3 parameter collections

In the previous sections, parameter learning was discussed using a
Beta parameter. The Beta parameters were supplied individually to
the learning algorithm, and the MAP value for each parameter was
retrieved individually. For more complicated models, it is often use-
ful to define a model structure with parameters which can be learned,
and then use the values of the learned parameters in the same struc-
ture. The ModelParameters pattern is a simple way of accomplishing
this. By using ParameterCollection, the model structure only needs
to be defined once. Parameters are added to the collection in a sim-
ilar fashion to Element collections. We specify the parameter name
and add it to the collection when we create the parameters.

This section will also explain the use of Dirichlet parameters. The
Dirichlet distribution is a multidimensional generalization of the Beta
with a variable number of concentration parameters or alpha values.
These values correspond to the weight of each possible outcome in
the posterior distribution. In a Dirichlet parameter with two dimen-
sions, the alpha values might again correspond to the outcome of
heads and tails, or true and false. Using a higher number of dimen-
sions, we can model a number of different categories or outcomes.

Suppose we are given a set of data in which each record represents
a roll of two die out of three possible die. The sum of the die is
available, as well as which die were selected for the roll. However,
the individual outcome of each die is not available. Our task is to
learn the fairness of each die.

The first step is to define the possible outcomes from a dice roll.
This is easily accomplished by using a Scala list:

This example is
found in
FairDice.Scala

val outcomes = List(1, 2, 3, 4, 5, 6)

Next, we create a set of model parameters representing the param-
eters of the fair dice model. We create a parameter representing the
fairness of each die and add it to the collection of model parameters.

val params = ModelParameters()

val fairness1 = Dirichlet(2.0, 2.0, 2.0, 2.0, 2.0,

2.0)("fairness1", params)

val fairness2 = Dirichlet(2.0, 2.0, 2.0, 2.0, 2.0,

2.0)("fairness1", params)

val fairness3 = Dirichlet(2.0, 2.0, 2.0, 2.0, 2.0,

2.0)("fairness1", params)

Each die is initially assumed to be fair. For convenience, the data
which we will learn the parameters from is represented in Scala se-
quence:

val data = Seq((2, 3, 8), (1, 3, 7), (1, 2, 3), (1, 2, 3),

...
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data is a sequence of 50 Scala tuples. The first two values in each
tuple indicate which two die were chosen to roll. The third value is
the sum of the two die.

The next step is to define a class representing the model structure.

class DiceModel(val parameters: ParameterCollection, val

data: Seq[(Int, Int, Int)], val outcomes: List[Int])

This defines a class which accepts a ParameterCollection, a set
of data, and a list of outcomes as its arguments. As we will see, the
values which are retrieved from the ParameterCollection depend on
whether we are working with the prior or posterior parameters. To
model the outcome of the sum, we can use an Apply element with
a function which sums the outcome of its arguments. We place the
following loop inside the DiceModel class:

val sum = (i1: Int, i2: Int) => i1 + i2

val trials = for (datum <- data) yield {

val die1 = Select(parameters.get("fairness" + datum._1),

outcomes: _*)

val die2 = Select(parameters.get("fairness" + datum._2),

outcomes: _*)

Apply(die1, die2, sum)

}

The code section above defines a Scala function which accepts two
Dirichlet parameters and an integer value. val sum = (i1: Int, i2:

Int) => i1 + i2 defines a Scala function which accepts two integer
values and returns their sum. Next, two Select elements are created
and parameterized by the input parameters. We retrieve the parame-
ters by using the get method from the input ParameterCollection.

Note that the arguments to Select are different from what has been
presented previously. Instead of directly enumerating each probabil-
ity and outcome, we specify a Dirichlet parameter and the list of pos-
sible outcomes. The last two lines of trial apply the sum function to
the die and observe the result. By calling the trial function for each
tuple in the sequence, we can create a model learned from the data.

We can now create an instance of the DiceModel class, using the
prior parameters from the parameter collection.

val model = new DiceModel(params.priorParameters, data,

outcomes)

To apply evidence to the model, we can write another loop over the
contents of the data and the trials defined inside the model class.

for ((datum,trial) <- data zip model.trials) {

trial.observe(datum._3) }
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Just as in the fair coin example, we create an expectation maximiza-
tion algorithm. This time, instead of passing the parameters in a list
or sequence, we can simply use the collection of parameters as an
input argument.

val numberOfBPIterations = 10

val numberOfEMIterations = 10

val algorithm = EMWithBP(numberOfEMIterations,

numberOfBPIterations, params)

algorithm.start

algorithm.stop

val d1 = Select(params.posteriorParameters.get("fairness1"),

outcomes:_*)

val d2 = Select(params.posteriorParameters.get("fairness2"),

outcomes:_*)

val d3 = Select(params.posteriorParameters.get("fairness3"),

outcomes:_*)

The code block above will create Select elements using to the MAP
value of the learned parameters. We retrieve the MAP value of the
parameters by using the posteriorParameters.get method of our
parameter collection. If we wanted to create another set of 50 trials
using the learned parameter values, we could simply use:

val model = new DiceModel(params.posteriorParameters, data,

outcomes)

Note that for a Select, a list of outcomes must be supplied as an
argument to along with their corresponding probabilities. This is be-
cause the number of concentration parameters is may vary, and the
type of the outcomes is not fixed. Running this code results in the
following output, in which we see the model has estimated the prob-
abilities of each value for each die. If one examines the full data dec-
laration in the example code, it is quite easy to see that there are only
three observed values of the sum of the die (3, 7 and 8), so the learn-
ing algorithm has correctly inferred that the most likely values of the
die are 1, 2 and 6, respectively.

The probabilities of seeing each side of d_1 are:

0.906250000442371 -> 1

0.0 -> 2

0.0 -> 3

0.0 -> 4

0.09374999955762903 -> 5

0.0 -> 6

The probabilities of seeing each side of d_2 are:

0.0 -> 1
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0.9999999996067813 -> 2

0.0 -> 3

0.0 -> 4

0.0 -> 5

3.9321864899990694E-10 -> 6

The probabilities of seeing each side of d_3 are:

0.0 -> 1

0.0 -> 2

0.0 -> 3

0.0 -> 4

0.0 -> 5

1.0 -> 6
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As was previously shown, Figaro is well suited for building PRMs
due to the object-oriented nature of Figaro and Scala. PRMs are a
powerful alternative to traditional Bayesian networks because they
can represent structural uncertainty about the model. There are many
different types of structural uncertainty: type uncertainty, in which
the class of an object is unknown; number uncertainty, in which the
number of objects to which an object is related is unknown; existence
uncertainty, in which we do not know if a particular object exists; and
reference uncertainty, in which we do not know to which other object
a given object is related. Figaro presents an easy for users to model
structural uncertainty in a probabilistic model and perform reasoning
over that uncertainty.

Consider a situation with type uncertainty. Using Scala’s object-
oriented features, we can construct a class hierarchy that represents
different features and properties of a parent class and use the hierar-
chy to reason about observations. For example, consider the abstract
class below:

import com.cra.figaro.language._

import

com.cra.figaro.algorithm.factored.VariableElimination

import com.cra.figaro.library.atomic.discrete.Uniform

abstract class Vehicle extends ElementCollection {

val size: Element[Symbol]

val speed: Element[Int]

lazy val capacity: Element[Int] = Constant(0)

}

A Vehicle is an abstract class that contains a size, speed and capac-
ity. The class is abstract since there are many types of vehicles and
each type of vehicle may have different distributions of size, speed
and capacity. Now, we will create some specific vehicles:

class Truck extends Vehicle { This example is
found in
Hierarchy.scala

val size: Element[Symbol] =

Select(0.25 -> ’medium, 0.75 -> ’big)("size", this)

val speed: Element[Int] = Uniform(50,60,70)("speed", this)

override lazy val capacity: Element[Int] =

Chain(size, (s: Symbol) => if (s == ’big) Select(0.5 ->

1000, 0.5 -> 2000); else Constant(100))("capacity", this)
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}

class Pickup extends Truck {

override val speed: Element[Int] =

Uniform(70,80)("speed", this)

override val size: Element[Symbol] =

Constant(’medium)("size", this)

}

class TwentyWheeler extends Truck {

override val size: Element[Symbol] =

Constant(’huge)("size", this)

override lazy val capacity = Constant(5000)("capacity",

this)

}

class Car extends Vehicle {

val size = Constant(’small)("size", this)

val speed = Uniform(70,80)("speed", this)

}

Each class definition specifies more details about the properties of
vehicles; most trucks, for example are either medium or big, except
for a specific type of truck (Twenty Wheeler) which is always huge.
This is an example of how Figaro can be combined with class hierar-
chies, where specific classes can override or modify the parent class
probabilistic model.

We can now perform reasoning about the hierarchy. First, let us
define some methods to create types of vehicles:

object Vehicle {

def generate(name: String): Element[Vehicle] =

Dist(0.6 -> Car.generate, 0.4 -> Truck.generate)(name,

universe)

}

object Truck {

def generate: Element[Vehicle] =

Dist(0.1 -> TwentyWheeler.generate, 0.3 ->

Pickup.generate,

0.6 -> Constant[Vehicle](new Truck))

}

object Pickup {

def generate: Element[Vehicle] = Constant(new Pickup)

}

object TwentyWheeler {

def generate: Element[Vehicle] = Constant(new

TwentyWheeler)
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}

object Car {

def generate: Element[Vehicle] = Constant(new Car)

}

We have introduced a new element here: Dist. Dist is a combina-
tion of Chain and Select. Dist selects an element at random from the
elements in the argument list, using the provided probabilities, and
sets the value of the Dist as the value of the element selected. We use
the objects above and the Dist element to generate vehicles from the
vehicle hierarchy. That is, with probability 0.4, the Vehicle.generate

produces a Truck class, and the specific type of truck generate is de-
termined by Truck.generate, and so forth. Now let’s create the rest
of the Figaro model and perform some reasoning:

val myVehicle = Vehicle.generate("v1")

universe.assertEvidence(List(NamedEvidence("v1.size",

Observation(’medium))))

val isPickup = Apply(myVehicle, (v: Vehicle) =>

v.isInstanceOf[Pickup])

val alg = VariableElimination(isPickup, name)

alg.start()

In this example, we’re reasoning about the type of an instance of a
class. First, we apply the evidence that the vehicle’s size is medium
using the assertEvidence method. Here, we apply the evidence by
referring the name of the element, without actually specifying which
element to apply the evidence; the ’medium will be applied to the size
element in any instantiation of the Vehicle class. Next, we instantiate
a Boolean element that is true when the type of the vehicle is an
instance of Pickup. The isInstanceOf[Pickup] is a Scala operation
that returns true when the variable is an instance of the specified
class. We then run variable elimination on the model to determine
the probability that the instantiated class is a Pickup.
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C R E AT I N G A N E W E L E M E N T C L A S S

For many applications, Figaro’s built-in element classes will suffice.
However, if you do need a new element class, it is usually not hard to
create one. The easiest way to create a new class is to inherit from an
existing class. We describe how to do this for atomic and compound
classes. Then we describe how to create an atomic or compound class
without inheritance. After that, we describe how to make a class us-
able by range computation and variable elimination. Next, an expla-
nation is given on how to create parameters and parameterized ele-
ments suitable for use with expectation maximization or other learn-
ing algorithms. Finally, we show how to create a class with special
behavior under Metropolis-Hastings.

More examples of element classes can be found under com.cra.fig-
aro.library. If you do create a new element class and think it might
be generally useful, we would appreciate if you would consider shar-
ing it, either as a library or possibly as part of a future Figaro release.

10.1 creating an atomic class with inheritance

The easiest way to create a new class is to inherit from an existing
class. For example, a discrete uniform distribution is just a special
case of a discrete selection where every element has the same proba-
bility. We can create this element class simply with:

class AtomicUniform[T](name: Name[T], options: Seq[T],

collection:

ElementCollection) extends The with keyword
in Scala will add a
trait to a class.
Traits can be
parameterized but
they cannot have
constructors

AtomicSelect[T](name, options.toList map (1.0 -> _),

collection)

with Atomic[T] with Cacheable[T] {

override def toString = "Uniform(" + options.mkString(",

") + ")" }

The atomic uniform class is one for which the options are explic-
itly specified values of type T, as opposed to the compound uni-
form in which the options are elements over values of type T. The
atomic uniform class takes three arguments: a name (which every
class takes), an element collection (likewise), and a sequence spec-
ifying the options the uniform distribution can produce. The class
inherits the AtomicSelect class, which represents selection over a dis-
crete set of options with their associated probabilities. There is also
one other trait that is extended in the AtomicUniform, Cacheable[T].
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This trait is used to determine what type of chain should be cre-
ated at the chain instantiation time. If the parent of a Chain extends
Cacheable, a CachingChain is instantiated when a chain element is
created. This trait is not required (elements by default are assumed
to be not cacheable), but can result in increased performance if the
support of the new element is small.

To carry out the inheritance, we need to transform the sequence
of options into a list of (probability, value) pairs, which are the ar-
gument to AtomicSelect. This is accomplished by the expression
options.toList map (1.0 -> _). This turns the sequence of options
into a list and applies to all elements of the list the function that maps
an option to the pair (1.0, option).

Let us understand the notation (1.0 -> _). This is Scala shorthand
for the function which maps an option to the pair (1.0, option).
There are two things in this shorthand worth noting. First, 1.0 -> _

is another way of describing the pair (1.0, _). It is a more descrip-
tive way of saying "with probability 1.0, you get _," rather than just
"the pair of 1.0 and _." Second, _ denotes the argument to the function,
when you know you are defining a function. Here, you know you are
defining a function because it appears in the context of applying a Scala contains many

transformations on
sequences besides
toList

function to all elements of a list. This underscore notation can only
be used when the argument appears exactly once in the body of the
function. Thus (1.0 -> _) is Scala’s shorthand for the function (t:

T) => (1.0, t). It really doesn’t matter if this shorthand is mean-
ingful to you; feel free to use the longer version wherever you want.
Note that the probabilities in the AtomicSelect are not normalized;
AtomicSelect automatically takes care of the normalization.

The only thing the body of AtomicUniform does is to override the
toString method that every Scala class has. The method produces
something meaningful when the element is converted into a string.
options.mkString(", ") creates a string consisting of each of the
options separated by a comma and a space.

A problem with the above class definition is that to create an in-
stance, you have to say:

new AtomicUniform(name, options, collection)

i.e., you have to use the keyword new, you have to call it AtomicUni-
form (as opposed to CompoundUniform, described below), and you
have to supply the name and collection explicitly. To provide a more
convenient way to create instances, we provide the following code:

object Uniform { The * in the
argument list
defines a variable
length argument list

def apply[T](options: T*)(implicit name: Name[T],

collection:

ElementCollection) =

new AtomicUniform(name, options, collection) }
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Using this definition, you can simply say Uniform(options)to cre-
ate an atomic uniform element.

This snippet uses a number of features of Scala. It is not important
that you understand all these features in detail, as the snippet shows
a pattern that can be copied directly to your class.

First, an object is a Scala class that only has a single instance. There
can be an object with the same name as a class; in that case they
are called companions. The object holds what are commonly known
as static methods, i.e., methods that don’t depend on the state of a
specific instance, as well as methods that create elements of the class.
The latter are known as factory methods. In our example, the factory
method creates a new instance of AtomicUniform.

Second, a method named apply is special. It can be invoked sim-
ply by providing the name of the object and listing its arguments
in parentheses. So instead of saying Uniform.apply(options), you
can say Uniform(options). Methods named apply are often used for
defining factory constructors.

Third, Scala allows curried functions. These are functions that can
be applied to one set of arguments to yield a function that can be
applied to more arguments. Scala indicates this by providing multiple
argument lists to a function. So, in our example, the first argument
list consists of the sequence of options, while the second consists of
the name and element collection.

Finally, the second argument list to apply is implicit. This means
that you can leave out the argument list and Scala will implicitly fill it
in with special values defined elsewhere. In this case, "" is the implicit
value of type Name and the current universe is the implicit value of
type ElementCollection. This is why you don’t have to supply these
arguments when you create an element unless you explicitly want to
specify a different name or element collection.

10.2 creating an compound class with inheritance

Most compound classes inherit from either Chain or Apply. We will
show an example of both.

10.2.1 Inheriting from Chain

First, let us continue with discrete uniform elements, but now let us
define one whose argument is itself a sequence of elements. We define
it as follows:

class CompoundUniform[T](name: Name[T], options:

Seq[Element[T]],

collection: ElementCollection) extends

CachingChain[List[T],T] ( name,
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new Inject("", options, collection),

(options: Seq[T]) => new AtomicUniform("", options,

collection), collection) {

override def toString = "Uniform(" + options.mkString(",

") + ")"

}

First, note that it inherits from CachingChain. When you inherit
from Chain, you have two options. You can specify either a caching or
non-caching version of the chain (which has preset cache capacities),
or you can directly instantiate Chain with a specified cache capacity.
Note that chains themselves do not extend the Cacheable trait, since
the support of a can be infinite. Also, when you inherit from a class,
you have to explicitly pass along the name and collection arguments.

The operation of the chain can be thought of as follows: first, pro-
duce specific values for each of the options. Then, given such a spe-
cific set of values, create an atomic uniform element over those values.
Finally, generate a specific value from the atomic uniform element,
i.e., a uniformly chosen value from those values.

The meat of the definition is the second and third arguments. The
second argument defines the parent of the chain, which is the element
that generates the sequence of option values. We have to convert the
sequence of elements that are the arguments to CompoundUniform to
an element over sequences; this is achieved using Inject. The third
argument defines the function of the chain. Given a particular set of
values of the options, it creates an atomic uniform with those values.

That’s all there is to it. The Uniform object also defines an apply

method that allows you to create compound uniform elements conve-
niently.

10.2.2 Inheriting from Apply

Inheriting from Apply will typically be used when you want to create
an element class that captures a common function. When you inherit
from Apply, you have to explicitly inherit from the Apply class that
has the right number of arguments. For example, if your function has
two arguments, you inherit from Apply2. For example, the element
class that represents the comparison of the values of two elements for
equality is defined by:

class Eq[T](name: Name[Boolean], arg1: Element[T], arg2:

Element[T],

collection: ElementCollection) extends Apply2(name, arg1,

arg2, (t1: T, t2: T) => t1 == t2, collection) {

override def toString = arg1.toString + " === " +

arg2.toString

}



10.3 creating an atomic class without inheritance 75

In addition to the name and element collection, we need to pass to
Apply2 the two arguments and the function to be applied.

10.3 creating an atomic class without inheritance

Since most atomic classes are non-deterministic and creating a non-
deterministic class requires more work than a deterministic class, we
will use a non-deterministic example, specifically, continuous uni-
form elements. A non-deterministic atomic element class needs to
define the following things:

• The Randomness type

• A generateRandomness method that produces a randomness ac-
cording to an appropriate generation process

• A generateValue method that deterministically generates the
value of the element given its randomness

• A density method that returns the density of any possible value

The class that defines continuous uniform distributions between
given lower and upper bounds is defined as follows:

import com.cra.figaro.language._

import com.cra.figaro.util.random

class AtomicUniform(name: Name[Double], val lower: Double,

val upper: Double, collection: ElementCollection)

extends Element[Double](name, collection) with

Atomic[Double] {

type Randomness = Double

val diff = upper − lower

def generateRandomness() = random.nextDouble() * diff +

lower

def generateValue(rand: Randomness) = rand

val constantDensity = 1.0 / diff

def density(d: Double) = if (d >= lower && d < upper)

constantDensity; else 0.0

override def toString = "Uniform(" + lower + ", " + upper

+ ")"

}

This should be self-explanatory given everything we’ve seen so far.
In this class, we defined generateRandomness to actually produce the
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value, and generateValue to simply pass it along, but a different de-
sign would have been possible. For instance, an atomic normal dis-
tribution would compute its randomness value using the standard
normal distribution, and the value of the element would be the ran-
domness shifted by the mean and scaled by the variance. For other
atomic non-deterministic classes, the logic of the methods would be
richer, but the general structure would be the same. Note that the
generateRandomness function uses the Figaro random number gen-
erator called random to generate random values. One can use any
random number generator to generate the randomness of an element.
However, using the Figaro supplied random number generator allows
one to globally set the seed of the generator in the Figaro package,
thus enabling reproducible random processes.

10.4 creating a compound class without inheritance

Creating a compound class without inheritance is unusual, as Chain

and Apply are ubiquitous. The most common use will probably be
to create variants of Chain and Apply that take more arguments than
the built-in classes. To do that, you should take the code for Chain

or Apply as a model and base your new class on that. Otherwise,
for a deterministic compound class, you need to define the following
elements:

• The args method that returns a list of the elements on which
this element depends. Make sure this is a def, not a val. (Other-
wise, you might run into a nasty Scala issue with abstract fields
in a superclass being initialized in a concrete subclass. When an
instance of the subclass is constructed, the superclass instance
is constructed first, and a superclass of all element classes is the
Element class, which uses args in its constructor. If args were
a val, it would be uninitialized at that time and throw a null
pointer exception.)

• The generateValue method that takes no arguments and pro-
duces the value of the element as a function of the values of the
arguments of the element and its randomness.

For example, Apply1 is defined by:

class Apply1[T1,U](name: Name[U], val arg1: Element[T1],

val fn: T1 => U, collection: ElementCollection)

extends Apply[U](name, collection) {

def args: List[Element[_]] = List(arg1)

type Arg1Type = T1

def generateValue() = fn(arg1.value)
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override def toString = "Apply(" + arg1 + ", " + fn + ")"

}

For non-deterministic classes, you need to define the additional
elements Randomness, generateRandomness, and density, as before.

10.5 making a class usable by variable elimination

Certain algorithms rely on element classes being able to support spe-
cific functionality. For example, computing ranges requires that it be
possible to enumerate the values of every element in the universe.
One way to make a new element class support value enumeration
would be to modify the code that enumerates values in Values.scala,
This approach would not be modular; it is undesirable for a user to
have to modify library code.

Figaro provides a different solution. There is a trait called ValuesMa-

ker that characterizes element classes for which values can be enu-
merated. If you want your element class to support range computa-
tion, make it extend ValuesMaker and have it implement the makeValues
method, which produces an enumeration of the possible values of the
element. For example, we might want to enumerate the possible val-
ues of an atomic binomial element. If n is the number of trials of the
binomial, we can define the function:

def makeValues: Set[Int] = (for { i <- 0 to n } yield

i).toSet

The makeValues method returns a set of values. For a binomial,
this is simply all the integers from 0 to the number of trials. This set
is computed through a for comprehension whose result is turned into
a set. We also make AtomicBinomial extend ValuesMaker.

Similarly, variable elimination requires both that it be possible to
enumerate the values of an element and that it be possible to turn
into a set of factors. To specify that it has the latter capability, you
make it extend ProbFactorMaker and implement the makeFactors

method. Factors are parameterized by the type of values they contain;
in this case, since we are creating a factor representing probabilities,
we make a Factor[Double].

For example, the AtomicBinomial class extends ProbFactorMaker

and includes the following code:

def makeFactors(binomial: AtomicBinomial):

List[Factor[Double]] = {

val binVar = Variable(binomial)

val factor = new Factor[Double](Array(binVar))

for { (value, index) <- binVar.range.zipWithIndex } {
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factor.set(List(index), binomial.density(value.value))

}

List(factor)

}

The makeFactors method returns a list of factors. A factor is a table
defined over a set of variables. To create a variable out of an element,
use Variable. For example, the Variable(binomial) line above cre-
ates a variable out of this atomic binomial element. Creating variables
is memoized, so you can be sure that every time you call Variable on
an element you get the same variable. This is important if an element
participates in multiple factors. To create a factor, you pass it an array
of its variables.

Each row in a factor associates a value with a set of indices into the
variable’s ranges. To specify the factor, you need to set these values.
This is accomplished with the set method of Factor. In the above
example, we have:

for { (value, index) <- binVar.range.zipWithIndex } {

factor.set(List(index), binomial.density(value.value))

}

The first line uses a for comprehension to get at pairs of values
of the binomial variable together with their index into the range.
The standard Scala library method zipWithIndex takes a list and
associates each element of the list with its index in the list. For ex-
ample, List("a", "b").zipWithIndex is List(("a", 0), ("b", 1)).
The first argument to factor.set is an list of indices into the ranges
of the variables, in the same order as the array used to create the fac-
tor. The second argument is the value to associate with those indices.

At the end, makeFactors returns a list consisting of this single fac-
tor. This is the basic principle behind creating factors. You can find a
variety of more complex examples, including some with multiple vari-
ables, in ProbFactor.scala For atomic elements, the process should
usually be similarly simple to that for binomials.

10.6 making parameters and parameterized elements

Support for learning models from data is accomplished through pa-
rameters and parameterized elements. Defining new elements of these
types requires the use of a couple of traits − Parameter and Parameter-

ized − and a method to produce factors. Much of the required code
is centered on the idea of sufficient statistics, as they are currently the
means by which parameters are learned.

A parameter must extend the Parameter trait. This trait contains
several important methods which allow use with the learning algo-
rithms. First, the method zeroSufficientStatistics must provide
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an appropriate result for this parameter type. For example, a Beta pa-
rameter has two hyperparameters, alpha and beta. Hence, zeroSuffic-
ientStatistics returns a sequence of length two.

override def zeroSufficientStatistics (): Seq[Double] = {

Seq(0.0, 0.0)

}

An additional method, sufficientStatistics, provides sufficient
statistics with a value of 1.0 in the position specified by an index
or value. This method can be useful when creating factors for pa-
rameterized elements. The parameter trait also defines a method for
calculating the expected value of the parameter. Expected value is
used during the parameter learning process, and also as an argument
during the creation of learned elements.

We can create a parameterized version of an existing element by
extending that type of element and including the Parameter trait. In
the case of Beta, we have:

class AtomicBeta(name: Name[Double], a: Double, b: Double,

collection: ElementCollection) Element[Double](name,

collection) with Atomic[Double] with DoubleParameter with

ValuesMaker[Double] { ... }

Next, we must decide which values are actually learned within the
parameter. In the case of Beta, the alpha and beta hyperparameters
are already inputs to the AtomicBeta element. We will use these to
represent prior knowledge or belief about the parameter. To facilitate
parameter learning, we can create Scala variables which are modified
by learning algorithms. Again, in the case of Beta, we can define

var learnedAlpha = a

var learnedBeta = b

The MAP value for a beta distribution is well known and easily
defined:

def MAPValue: Double = {

if (learnedAlpha + learnedBeta == 2) 0.5

else (learnedAlpha - 1) / ( learnedAlpha + learnedBeta -

2)

}

It is also necessary to define how the parameter value is maximized
according to expected sufficient statistics. This method is used inside
expectation maximization. In this case, we can simply set the value of
alpha and beta to their corresponding values.
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def maximize(sufficientStatistics: Seq[Double]) {

require(sufficientStatistics.size == 2)

learnedAlpha = sufficientStatistics(0) + a

learnedBeta = sufficientStatistics(1) + b

}

Having created a parameter, we may now create an element which
uses it. Compound elements which use Parameters as their argu-
ments are defined by the Parameterized trait. This trait is quite sim-
ple and contains only a reference to the element’s parameter. Contin-
uing the example, we can create a version of Flip which uses Beta in
the following way:

class ParameterizedFlip(name: Name[Boolean], override val

parameter: AtomicBeta, collection: ElementCollection)

extends Element[Boolean](name, collection) with Flip

with SingleParameterized[Boolean]

This class inherits most of its behavior from Flip. Much like a com-
pound flip, the probability of producing true is derived from the Beta:

def probValue = parameter.value

If an existing element is being extended, it is advisable to define a
factory method in the companion object which accepts a Parameter el-
ement as input, and creates an instance of the parameterized element.
To illustrate, consider the apply method for ParameterizedFlip:

def apply(prob: Element[Double])(implicit name:

Name[Boolean], collection: ElementCollection) =

new ParameterizedFlip(name,

prob.asInstanceOf[AtomicBeta], collection)

To learn the MAP value of the parameter, Figaro provides an imple-
mentation of the expectation maximization algorithm. During the ex-
pectation step, the algorithm retrieves the distribution of the element
according to the current value of the parameter, then converts the dis-
tribution to sufficient statistics. This conversion needs to be defined
inside the parameter, using the method distributionToStatistics.
It accepts as an argument a Scala stream consisting of pairs of dou-
ble values (probabilities) and possible outcomes of the element. The
implementation for a Flip is shown below.

def distributionToStatistics(distribution: Stream[(Double,

Boolean)]): Seq[Double] = {

val distList = distribution.toList

val trueProb =

distList.find(_._2) match {
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case Some((prob,_) => prob

case None => 0.0

}

val falseProb =

distList.find(!_._2) match {

case Some((prob,_)) => prob

case None => 0.0

}

List(trueProb, falseProb)

}

10.7 creating a class with special metropolis-hastings

behavior

By default, proposing an element in Metropolis-Hastings uses the
class’s standard generateRandomness to propose the new random-
ness. Earlier, we described how it is sometimes useful to create a
special proposal distribution and gave SwitchingFlip as an example.
SwitchingFlip is just like an ordinary Flip except that each time it is
proposed, it switches to the opposite value.

Creating a different proposal distribution for an element is achieved
through the nextRandomness method. In Metropolis-Hastings, the ac-
ceptable probability of a sample is defined as:

P(r1 -> r0)P(r1)
P(r0 -> r1)P(0)

where r0 is the original randomness, r1 is the proposed random-
ness, P(r1) is the probability of generateRandomness returning r1, and
P(r0 -> r1) indicates the probability of nextRandomness returning r1

when its argument is r0. The nextRandomness method returns three
values; the new randomness, the transition probability ratio (P(r1 ->
r0)/P(r0 -> r1)) and the model probability ratio (P(r1)/P(r0)). These ra-
tios are separate values because some algorithms, such as simulated
annealing, need to access these ratios before they are multiplied to-
gether.

By default, the nextRandomness method simply uses the element’s
generateRandomness method and returns 1.0 for the both probability
ratios. This is correct in most cases, and is used for most of the built-
in elements. However, it can be overridden if desired. For example,
the definition of SwitchingFlip includes:

override def nextRandomness(rand: Randomness) =

if (rand < probValue)

(uniform(probValue, 1.0), 1.0, (1.0 − probValue) /

probValue)

else (uniform(0.0, probValue), 1.0, probValue / (1.0 −

probValue))
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private def uniform(lower: Double, upper: Double) =

random.nextDouble * (upper − lower) + lower

Everything else is inherited from Flip. The randomness of Flip is
a double uniformly distributed between 0 and 1. The generateValue

method of Flip tests whether this random number is less than the
probability of a true outcome, which is contained in the probValue

field. So, SwitchingFlip’s nextRandomness method first checks if the
randomness is less than this value, which would imply that the cur-
rent value is true. If it is, the new randomness is uniformly chosen
between probValue and 1, which would make the next value false. On
the other hand, if the randomness is greater than probValue, the new
randomness is chosen uniformly between 0 and probValue, which
would make the next value true. The probability of going from false
to true or from true to false are both 1, so the transition probability
ratio is 1. However, the density of false is 1 − probValue, while the
density of true is probValue, so in the first case (new value is false),
the model probability ratio is (1.0 − probValue) / probValue, and
vice versa.
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C R E AT I N G A N E W A L G O R I T H M

In addition to creating new element classes, Figaro provides sup-
port for creating new algorithms and integrating them into the ex-
isting library. Support is provided for query answering algorithms
(like Metropolis-Hastings and variable elimination), probability of
evidence algorithms, most probable explanation, and defining new
kinds of algorithms. Support is also provided both for anytime and
one- time algorithms. We start this section by describing how to create
a new one-time query-answering algorithm. We then discuss creating
an anytime version of the algorithm, paying attention to sharing code
between the one-time and anytime versions. We then describe how to
create a learning algorithm, how to define an algorithm to be extensi-
ble to new classes, and how to define a new category of algorithm.

A good way to learn about creating algorithms, after reading this
section, is to examine the Figaro code in com.cra.figaro.algorithm

and its subpackages. If you do develop a new algorithm, please con-
sider sharing it.

11.1 general considerations

All algorithms inherit from the Algorithm class, which provides a
basic framework for algorithms, including starting, stopping, and
killing them. Algorithm contains initialize and cleanup methods.
The default implementation of these methods is to do nothing. You
can override this for your algorithms if they require bookkeeping.
For example, probability of evidence algorithms assert the named ev-
idence at the beginning and remove it at the end, so they override
these methods as follows:

def initialize(){

super.initialize()

// assert the evidence

}

def cleanup() {

// remove the evidence

super.cleanUp()

}

Note that we make sure to do the superclass’s initialization and
cleanup, and note that the superclass’s initialization happens before
this class, and its cleanup happens after this class.

83
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11.2 one-time query answering algorithm

One-time query answering algorithms inherit from the trait OneTimeProb-
Query. To implement such an algorithm, you need to provide imple-
mentations for:

• A constructor that allows the universe on which to operate and
the set of query elements to be specified.

• run(), which runs the algorithm, putting it in a state where
it can answer queries. For example, for a sampling algorithm,
it collects and stores the required number of samples. For vari-
able elimination, it eliminates all variables except the query vari-
ables.

• computeDistribution(element), which returns a distribution
over values of the element. The element must be one of the
query elements specified when the algorithm is created. The
distribution is represented as a stream of probabilities paired
with values. A stream is a lazy data structure that is potentially
infinite. Streams are used for the return values of distributions
to allow for algorithms that can return distributions with a non-
zero probability of an infinite number of elements, although
there are no such algorithms currently.

• computeExpectation(element, function), which computes the
expectation of the element under the given function that maps
a value of the element to a double.

• Optionally, computeProbability(element, predicate), which
computes the probability that the element satisfies the given
predicate that maps a value of the element to a Boolean.

11.2.1 Sampling

Extra support is provided for sampling algorithms in the form of
UnweightedSampler and WeightedSampler classes. These take care of
everything for you except for the process of producing a single sam-
ple. All you have to do for an unweighted sampler is extend Unweight-

edSampler and write a sample method that returns an instance of the
Sample type, which stores the values of elements. The Sample type
is defined to be Map[Element[_], Any]. The _ in place of the type
parameter of Element indicates that the type parameter is unspeci-
fied, so any element can appear here. The element is mapped to an
instance of Any which is the common supertype of all Scala types. So
any element can be mapped to any value. To get a value out of a sam-
ple, you can use the Scala asInstanceOf[T] method of the sample.
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11.2.2 Expansion and factors

A useful operation is to expand all chains in a universe to obtain the
complete set of elements in the universe. This is achieved using the
syntax:

Expand(universe).expand()

As usual, the universe argument can be omitted, using the current
default universe. Support is provided for algorithms that are based
on factors. Variable elimination is one example, but there are many
other such algorithms. To create all the factors for an element, use:

ProbFactor.make(element)

The standard procedure to turn a universe into a list of factors is
to:

1. Expand the universe.

2. Call universe.activeElements to get all the elements in the
universe.

3. Make the factors for every element and collect them.

Operations in factored algorithms are defined by a semiring alge-
braic structure. There are several semiring definitions in the package
com.cra.figaro.algorithm.factored. Each semiring defines a prod-
uct and sum operation, and a value for zero and one which satisfy
a set of properties. Different semirings are appropriate for certain al-
gorithms and data types; however, the most frequently used set of
operations is SumProductSemiring.

11.3 anytime algorithms

An anytime algorithm proceeds in a series of steps. The algorithm
can be interrupted after any step. For a sampling algorithm, a natural
step is taking a single sample. The algorithm blocks while running a
step, only answering queries when the step has terminated.

To create an anytime algorithm, in addition to the query answering
methods like computeDistribution, you need to define the following:

• runStep(), which is called repeatedly to run a single step. An-
swering queries should be a valid operation after any step.

11.3.1 Code sharing

Some algorithms, such as Figaro’s built-in sampling algorithms, might
come in both anytime and one-time versions. It is desirable to share
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as much code as possible between these versions. In addition, differ-
ent algorithms might share the same underlying code. For example,
Metropolis-Hastings and importance sampling are both sampling al-
gorithms, but they are somewhat different because the first uses un-
weighted samples while the second uses weighted samples. Two dif-
ferent unweighted sampling algorithms will want to share even more
code. Figaro uses Scala’s abstract classes and traits to help achieve
code sharing.

A word on abstract classes versus traits. Neither can be instantiated.
The main differences are that classes can take arguments, while traits
support multiple inheritance. An inherited class must always be the
first thing from which a subclass inherits, while traits can appear
subsequently in the inheritance list.

All algorithms that compute conditional probabilities inherit from
ProbQueryAlgorithm, from which OneTimeProbQuery and AnytimeProb-

Query inherit. Algorithms that implement both versions can contain
their core functionality in a class and provide a subclass or a construc-
tor that inherits from one or the other of these traits, providing the
specific methods for anytime or one-time algorithms.

For sampling algorithms, AnytimeSampler and OneTimeSampler are
provided. These take care of the mechanics of running the sampler re-
peatedly. In particular, the AnytimeSampler implements the initialize
and runStep methods so all you have to write is sample. These traits
have the subtraits AnytimeProbQuerySampler and OneTimeProbQuery-

Sampler that specifically capture sampling algorithms that compute
the conditional probability of queries. In addition, Figaro provides
UnweightedSampler and WeightedSampler that handle the mechanics
of Sample data types, initializing sample sets, accumulating samples,
and answering queries involving samples.

Using all these traits and classes, anytime and one-time importance
sampling can be defined easily. First we create an Importance class,
as follows:

abstract class Importance(universe: Universe, targets:

Element[_]*)

extends WeightedSampler(universe, targets:_*) {

// implementation of sample() goes here

}

It takes the universe to operate on as its first argument and a
comma-separated sequence of target query elements as its second.
It is specified to be a weighted sampler using the same universe and
targets. The body of the class implements the sample method. Note
that this class is abstract and cannot be instantiated. We provide a
companion Importance object that provides two factory constructors,
one for anytime and one for one-time importance sampling:
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object Importance {

def apply(targets: Element[_]*)(implicit universe:

Universe) =

new Importance(universe, targets:_*)

with AnytimeProbQuerySampler

def apply(myNumSamples: Int, targets:

Element[_]*)(implicit universe: Universe) = new

Importance(universe, targets:_*)

with OneTimeProbQuerySampler {

val numSamples = myNumSamples }

}

The first constructor takes has two argument lists. The first is a
comma-separated sequence of query targets, and the second provides
the universe. Since it implicit, it can be omitted and the default uni-
verse is used. Since the number of samples is not explicitly provided,
it is assumed that the anytime version is wanted, so the constructor
inherits from AnytimeProbQuerySampler. In the second, case, the num-
ber of samples is specified, so it inherits from OneTimeProbQuerySampler.
One detail to note is that OneTimeProbQuerySampler contains an ab-
stract field named numSamples that must be defined to create an in-
stance of the trait. This is accomplished through the code:
OneTimeProbQuerySampler { val numSamples = myNumSamples } This
creates an anonymous subclass of OneTimeProbQuerySampler in which
the numSamples field is defined to be the value passed into the con-
structor.

11.4 learning algorithms

Learning algorithms (using sufficient statistics) require that the suf-
ficient statistics of a parameter are modified with the learned result.
The EM algorithm is defined in the base class GeneralizedEM, which
accepts any ProbQueryAlgorithm inference algorithm as an argument.
Figaro provides implementations of expectation maximization using
algorithms like importance sampling, Metropolis-Hastings and belief
propagation for the estimates the sufficient statistics of the target pa-
rameters using an inference algorithm like importance sampling or
belief propagation. To complete the expectation step, the expected
sufficient statistics factors must be retrieved for all of the parame-
ters. This can be accomplished by calling the method distribution

from the inference algorithm, then using distributionToStatistics,
which is implemented by parameterized elements.

GeneralizedEM does not directly change the values of parameters.
It only produces an estimate of the sufficient statistics given the ob-
served data. The actual modification of parameter elements is han-



11.5 allowing extension to new element classes 88

dled in the maximization step of expectation maximization, using the
maximize method defined by the parameter.

11.5 allowing extension to new element classes

We saw in the section on making a class usable by variable elimination
how to make a new element class work under an existing algorithm
without modifying the algorithm’s code. To allow this, the algorithm
must be defined to support extension in this way. We illustrate how
to do this using range computation. The computation uses at its heart
a function called concreteValues whose definition is as follows:

private concreteValues[T](element: Element[T], depth: Int,

numArgSamples: Int, numTotalSamples: Int): ValueSet[T] =

element match {

case c: Constant [_] => withoutStar(Set(c.constant))

case f: Flip => withoutStar(Set(true, false))

...

case v: ValuesMaker[_] => v.makeValues(depth)

case _ => withStar(Set())

}

This function takes an element and tests to see what kind of ele-
ment it is. If it is a constant, the values is a singleton set containing
the constant; if it is a flip, it is a set containing true and false, and so
on. If the value fails to match any of the built-in types for which this
function is defined, it arrives at the second to last case. This tests if
the value is an instance of ValuesMaker. If it is, the values makeValues
method is used. The final case is a catchall: the notation _ represents
a pattern that catches all values. If the value has arrived at this case,
we can’t compute the values and we just make them *, so the rest of
the computation can proceed.

11.6 creating a new category of algorithm

Suppose you want to create a new category of algorithm. For example,
probability of query algorithms, probability of evidence, and most
likely value algorithms are all different categories. Figaro provides
some infrastructure to help with creating a new kind of algorithm.
We will illustrate how this is done for most likely value algorithms,
and the same pattern can be used elsewhere.

All algorithms extend the Algorithm trait, which defines the gen-
eral interface to algorithms using start, stop, resume, and kill. To
define a new category of algorithm, you extend algorithm and define
methods for the different ways the algorithm can be queried. For ex-
ample: The val in front of

the universe
argument indicates
that universe is a
field of
MPEAlgorithm that
can be accessed
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trait MPEAlgorithm extends Algorithm {

val universe: Universe

/**

* Particular implementations of algorithm must provide

the following method.

*/

def mostLikelyValue[T](target: Element[T]): T

}

An MPEAlgorithm contains the universe on which it is defined as
an argument. It provides one query method, which returns the most
likely value of a target method. This method is abstract (it has no
implementation) and must be implemented in a particular implemen-
tation of MPEAlgorithm.

Next, we provide one-time and anytime traits for MPE algorithms.
The one-time trait is very easy:

trait OneTimeMPE extends MPEAlgorithm with OneTime

That’s all there is to it. Figaro’s OneTime implements the general
algorithm operations for starting, stopping, and killing algorithms
(fairly trivial in this case). It also declares an abstract run() method,
which is called when the algorithm is started. This method must be
implemented in implementations of OneTime, and, by extension, im-
plementations of OneTimeMPE. An example of a one-time MPE algo-
rithm is a one-time Metropolis-Hastings annealer, which is captured
in the OneTimeMetropolisHastingsAnnealer class. This class extends
(indirectly) OneTimeSampler, which is defined as follows.

trait OneTimeSampler extends Sampler with OneTime {

/**

* The number of samples to collect from the model.

*/

val numSamples: Int

/**

* Run the algorithm, performing its computation to

completion.

*/

def run() = {

resetCounts()

for { i <- 1 to numSamples } { doSample() }

update()

}

}

In this case, run resets the statistics of the sampler, calls doSample

the required number of times, and updates the representation of the
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result. Different categories of algorithms can use the same general
sampling process; for example, the one-time importance sampling al-
gorithm for computing the probability of query variables also inherits
from OneTimeSampler.

For the anytime version of an MPEAlgorithm, we need to do more
work to define the services provided by the thread that computes the
MPE and the responses it produces.

trait AnytimeMPE extends MPEAlgorithm with Anytime {

/**

* A message instructing the handler to compute the most

likely value of the target element.

*/

case class ComputeMostLikelyValue[T](target: Element[T])

extends Service

/**

* A message from the handler containing the most likely

value of the previously requested element.

*/

case class MostLikelyValue[T](value: T) extends Response

def handle(service: Service): Response =

service match {

case ComputeMostLikelyValue(target) =>

MostLikelyValue(mostLikelyValue(target))

}

}

Anytime algorithms run in a separate thread, and we need to be
able to communicate with the thread to get the probability of evi-
dence out of it. This is accomplished using Scala’s actors framework.
Actors communicate by sending and processing messages. The Anytime
trait defines the runner field, which is the actor that runs the algo-
rithm. A request can be sent to the runner to compute the most likely
value of a target element. The syntax for sending the message to the
runner is:

runner ! Handle(ComputeMostLikelyValue(target))

which sends a message whose content is Handle(ComputeMostLikely-
Value(target)). The runner dispatches this message to a method
called handle (which is abstract in Anytime and defined in AnytimeMPE.
This method knows how to handle ComputeMostLikelyValue - it calls
the method mostLikelyValue, which, as we have seen, is abstract in
MPEAlgorithm and must be provided by an implementation. It turns
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the resulting value v into a message MostLikelyValue(v), which is
sent back to the caller from the runner. Case classes are

simple classes in
Scala that contain
some values. Case
objects are like
classes but with no
values; they are
essentially
constants.

To summarize, to define an anytime version of the algorithm, you
need to do the following:

1. Create a case class or object to represent the services provided
by your algorithm. Here, it is accomplished by:
case class ComputeMostLikelyValue(target: Element[T])

extends Service

2. Create a case class or object to represent the responses provided
by these services. Here:
case class MostLikelyValue[T](value: T)

extends Response

3. Create a handler in the method handle that takes a service, per-
forms some computation, and returns a response.

4. In each method that provides an interface to querying the algo-
rithm

a. Send a message to the runner asking for the appropriate service.

b. Receive a message from the runner, extract the result, and re-
turn it.
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C O N C L U S I O N

As you can see, there’s quite a lot to Figaro. We hope you will find it
useful in your probabilistic reasoning projects. If you have any com-
ments, suggestions, bug fixes, feature requests, etc., please refer to
the GitHub site (https://github.com/p2t2) for the best way to con-
tact us, or send them to figaro@cra.com.

Thanks for reading, and enjoy!
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