

Copyright

© Copyright Charles River Analytics Inc., 2017. All rights reserved.

Charles River Analytics Inc.
625 Mt. Auburn Street
Cambridge, MA 02138

Figaro License (Modified BSD-3)
Copyright (c) 2017, Avrom J. Pfeffer and Charles River Analytics, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the names of the owners (Avrom J. Pfeffer and Charles River Analytics, Inc.) nor the names of its
contributors may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Examples and Data

All software and related documentation is subject to restrictions on use and disclosure as set forth in the
Charles River Analytics Inc. Software License and Services Agreement, with restricted rights for U.S.
government users and applicable export regulations.

Companies, names, and data used in examples herein are fictitious unless otherwise noted.

Trademarks and Patents

Charles River Analytics Inc. is registered in the U.S. Patent and Trademark Office. Figaro™ is a trademark
of Charles River Analytics Inc. All other trademarks are the property of their respective owners.

There are patents pending on portions of the software described in this document.

NOTICE: This document contains confidential and proprietary information of Charles River Analytics Inc.
Use, duplication, or disclosure without the express written consent of Charles River Analytics Inc. is
prohibited.

Document Information

Figaro Quick Start Guide, for Figaro Version 5
Last updated July 9, 2019

Table of Contents Figaro Quick Start Guide

Figaro Version 5 i

Table of Contents

About This Guide ii
Related documents ... iii
Typographic conventions .. iii
Feedback and technical support .. iii

1 Getting Started 1

Overview ... 2
Installing the Simple Build Tool (SBT) .. 2
Downloading the FigaroWork project ... 3
Downloading Figaro .. 4

2 Tutorial: Hello World 5

Creating a model .. 6
Instantiating a reasoning algorithm .. 6
Querying the model using a reasoning algorithm ... 8
Producing results from queries ... 9
Modifying the model ... 9

3 Tutorial: Burglary Example 11

Downloading the Figaro examples ... 12
Creating a Bayesian network model ... 12
Creating a reasoning algorithm .. 13
Starting the algorithm and using it to query the model ... 14
Running the Burglary example ... 15
Exploring additional examples .. 15

Figaro Version 5 ii

ABOUT THIS GUIDE

This Quick Start Guide provides detailed steps so you can quickly create models with Figaro. It
assumes you are already familiar with the Scala programming language. If you are an advanced
user, or a programmer planning to incorporate Figaro into your application, please see Practical
Probabilistic Programming or the Figaro Tutorial.

Key topics include:

 Related documents

 Typographic conventions

 Feedback and technical support

About This Guide Figaro Quick Start Guide

Figaro Version 5 iii

Related documents
In addition to this guide, you can find more information that will help you better understand and use Figaro
in the following documents:

 Figaro Release Notes

 Practical Probabilistic Programming, by Avi Pfeffer
http://www.manning.com/pfeffer

 Figaro Tutorial

 Charles River Analytics website
https://www.cra.com/Figaro

 Scala documentation
http://www.scala-lang.org/documentation/

 SBT documentation
http://www.scala-sbt.org/documentation

Typographic conventions
Specific conventions are used in this guide to convey additional information about a subject:

Style Description Example
Code Code style is used for text that is used

literally, appearing exactly as shown.
This includes command names, path
and file names, and system information.

E:\Figaro\setup.exe

Italic
code

Italic code style is used for names of
variables that you must provide. For
example, you need to supply a value for
<your_file> in the path name
example to the right.

C:\Figaro\data\<your_file>

Note Notes highlight information, provide supplementary information, offer time-saving or easier ways
to perform the same task, or explain how to prevent errors or data loss. Be sure to read this
information carefully.

Feedback and technical support
We appreciate your comments about this guide. Please contact us with your comments, questions, and
requests for technical support.

By mail: Charles River Analytics
Attn: Figaro Technical Documentation
625 Mount Auburn Street, Cambridge, MA 02138

By email: figaro@cra.com

http://www.manning.com/pfeffer
https://www.cra.com/Figaro
http://www.scala-lang.org/documentation/
http://www.scala-sbt.org/documentation

Figaro Version 5 1

1 GETTING STARTED

Figaro is a probabilistic programming language that helps you quickly develop probabilistic
models. (Figaro models are data structures within the Scala programming language.) With Figaro,
you can both develop models and select a reasoning algorithm that draws useful conclusions when
you run your program. Figaro provides a library of models, elements, and reasoning algorithms.

This chapter includes the following key topics:

 Overview

 Installing the Simple Build Tool (SBT)

 Downloading the FigaroWork project

Getting Started Figaro Quick Start Guide

Figaro Version 5 2

Overview
We strongly recommend that you begin by using Simple Build Tool (SBT) to compile and run your Figaro
projects. We have provided the FigaroWork project as an initial example for you to explore. When you use
the SBT FigaroWork project, it downloads the latest versions of Scala and Figaro files for you. Figaro does
not require a particular platform; it works on Windows, Mac, and Linux.

Creating your models in the FigaroWork source directory and using SBT to compile and run your code is
the quickest and easiest way to get started using Figaro. For other methods of using Figaro, please see
Practical Probabilistic Programming or the Figaro Tutorial.

To get started using Figaro

1 Install the Simple Build Tool (SBT).

For more information, see Installing the Simple Build Tool on page 2.

2 Download the FigaroWork project.

For more information, see Downloading the FigaroWork project on page 3.

3 Create a simple probabilistic model and use a reasoning algorithm to query the model.

For more information, see Tutorial: Hello World on page 5.

4 Explore the Burglary example provided in the Figaro download.

For more information, see Tutorial: Burglary Example on page 11.

Once you follow these steps, you should be ready to use Practical Probabilistic Programming or the
Figaro Tutorial to combine Figaro model elements and reasoning algorithms to meet your probabilistic
programming needs.

Installing the Simple Build Tool (SBT)
Figaro uses the Simple Build Tool (SBT) to manage builds. Figaro 5 requires SBT version 0.13.16 or later.
Documentation for SBT is available at http://www.scala-sbt.org/0.13/tutorial/index.html.

To install the Simple Build Tool

1 Download the version of the SBT installer you need from http://www.scala-sbt.org/download.html.

2 Open the installer and follow the instructions to install SBT.

3 Open a command prompt.

4 Add the sbt\bin directory to your system Path variable using the appropriate method for your
operating system.

5 Run SBT to download the necessary files from the internet and test the installation. Enter:

sbt

You can also double-click the sbt.bat file in Windows to display the SBT console window.

SBT will provide information messages as it downloads files, then it will display the SBT prompt.

http://www.scala-sbt.org/0.13/tutorial/index.html
http://www.scala-sbt.org/download.html

Getting Started Figaro Quick Start Guide

Figaro Version 5 3

6 Exit SBT. Enter:

exit

To verify the Simple Build Tool installation

1 Create a HiWorld directory.

2 Create a HiWorld.scala file that contains the following:

object Hi {
 def main(args: Array[String]) = println("Hi!")
}

3 Open a command prompt.

4 Change directory to the HiWorld directory. For example, enter:

cd C:\Figaro\HiWorld

5 Start SBT. Enter:

sbt

SBT will provide information messages as it sets the project to the current directory. The command
prompt will look like:

>

6 Run the HiWorld project. Enter:

run

SBT will provide information messages as it updates files, resolves sources, and compiles the
HiWorld.scala file.

You will see a result similar to:

[info] ...
[info] Running Hi
Hi!
[success] Total time: 10 s, completed Sept 26, 2015 11:40:06 AM

7 Exit SBT. Enter:

exit

Downloading the FigaroWork project
We have provided the FigaroWork project as an initial example for you to explore. When you use the SBT
FigaroWork project, it downloads the correct versions of Scala and Figaro files for you. Creating your
models in the FigaroWork source directory and using SBT to compile and run them is the quickest and
easiest way to get started using Figaro.

The instructions in this guide are optimized for Windows, but the commands are similar for Mac and
Linux.

To download the Figaro Work project

1 Navigate to http://www.cra.com/figaro.

http://www.cra.com/figaro

Getting Started Figaro Quick Start Guide

Figaro Version 5 4

2 Click the Figaro Work link in the Figaro Work section to download the FigaroWork.zip file.

3 Extract the files to a folder on your local computer.

This will create a top-level FigaroWork directory, with two subdirectories: FigaroWork and
target.

To verify your environment is configured properly

1 Open a command prompt.

2 Change directory to the FigaroWork/FigaroWork directory.

3 Test SBT on the FigaroWork project. For example, on Windows, enter:

sbt "runMain Test"

SBT will provide information messages as it updates files, resolves sources, and compiles the
Test.scala file included in the FigaroWork download. This process may take a few minutes.

4 Check that the following output is created:

[info] Running Test
1.0
[success] Total time: 200 s, completed Sept 26, 2015 12:40:06 AM

If the output is not created, check that you ran SBT from the correct FigaroWork directory.

Downloading Figaro
We recommend that you download the FigaroWork project when you are initially exploring Figaro. (For
instructions, see Downloading the FigaroWork project on page 3.) When you are ready to explore Figaro
further, you can download Scala and the Figaro JAR and run Figaro from the Scala prompt. You can also
integrate Figaro into an existing project with Maven, Ivy, or SBT.

To download Figaro

1 Navigate to http://www.cra.com/figaro from a browser.

2 Click the Figaro installer link that matches your operating system and Scala version in the Download
Figaro section.

3 Run the installer.

The installer contains the compiled Figaro code as a JAR file, examples, documentation, Scaladoc, and
source code.

4 Add the directory that contains the Figaro JAR file to your system Path variable using the appropriate
method for your operating system. For example, if you installed the Figaro files to a Figaro folder on
your C drive, add:

C:\Figaro\figaro_5.0.0.0

http://www.cra.com/figaro

Figaro Version 5 5

2 TUTORIAL: HELLO
WORLD

This tutorial walks you through the three basic steps involved in probabilistic programming with
Figaro. You will use the Scala interactive console, which reads one line of Scala code at a time
and interprets it, to:

 Create a very simple probabilistic model—one that produces the string “Hello world!” with a
probability of 1.0.

 Select and run a probabilistic reasoning algorithm.

 Query the model using your selected algorithm to produce a result.

To successfully follow this tutorial, you must first follow the instructions in Installing the Simple
Build Tool and Downloading the FigaroWork project.

This tutorial includes the following key topics:

 Creating a model

 Instantiating a reasoning algorithm

 Querying the model using a reasoning algorithm

 Producing results from queries

 Modifying the model

Tutorial: Hello World Figaro Quick Start Guide

Figaro Version 5 6

Creating a model
1 Create a HelloWorldTest.scala file in the FigaroWork/src/main/scala directory.

SBT requires that your source code be placed in this directory.

If you cannot find this directory, follow the instructions in Installing the Simple Build Tool and
Downloading the FigaroWork project.

2 Edit the file to load the portion of the Figaro package that allows you to create models. Enter:

import com.cra.figaro.language._

The _ at the end of this line imports all the classes in the figaro.language package. It is
equivalent to Java’s *.

3 Create an object.

object HelloWorldTest{
 def main(args: Array[String]) {
 }
}

4 Create a probabilistic model after the definition of main. Enter:

val helloWorldElement = Constant(“Hello world!”)

We are creating an instance of Figaro’s Constant element with the field HelloWorldElement.
(In Scala, a field is similar to an immutable variable.) This element produces a value with the
probability of 1.0. When helloWorldElement is queried, it produces the string “Hello
world!” with a probability of 1.0.

Your file now looks like this:

import com.cra.figaro.language._
object HelloWorldTest{
 def main(args: Array[String]) {
 val helloWorldElement = Constant(“Hello world!”)
 }
}

Instantiating a reasoning algorithm
5 Determine which algorithm you want to use. Figaro includes the following algorithms:

 Exact inference using variable elimination – Expand the universe to include all elements generated
in any possible world, convert each element into a factor, and apply variable elimination to all the
factors with the VariableElimination object

 Approximate inference using belief propagation – Expand the universe to include all elements
generated in any possible world, convert each element into a factor, create a factor graph from the
factors, pass messages between factor and variable nodes, and answer queries on the targets using
the posterior distributions computed at each variable node with the BeliefPropagation
object

 Importance sampling – Compute the probability of evidence in a universe with a simple forward
sampling approach with the Importance object. When this algorithm encounters a constraint, it
multiplies the weight of the sample by the value of the constraint. Use this algorithm when

Tutorial: Hello World Figaro Quick Start Guide

Figaro Version 5 7

expanding a model produces an infinite number of elements or if you have atomic continuous
models.

 Metropolis-Hastings Markov chain Monte Carlo – Define proposal distributions, where a proposal
includes new randomnesses for any number of elements with the ProposalScheme object. Pass
your proposal scheme to the MetropolisHastings object to propose a new state at each step
of the algorithm, and either accept or reject the proposal.

 Probability of evidence – Compute the probability of all the evidence (not the conditional
probability of evidence) in steps so you can include or exclude conditions and constraints with the
ProbEvidenceSampler object

 Most probable explanation (MPE) – Compute the most likely values of elements given the
available evidence using variable elimination or simulated annealing with the
MPEVariableElimination or MetropolisHastingsAnnealer objects

 Particle filtering – Reason about dynamic models using an initial model, transition model, and
number of particles the algorithm should produce at each step with the ParticleFilter object

 Parameter learning – Learn model parameters from data using expectation maximization with the
ExpectationMaximization object

Figaro provides both one-time (the algorithm is run once) and anytime (the algorithm is run until
stopped) versions of some of these algorithms. In addition to the built-in algorithms, Figaro provides a
number of tools for creating your own reasoning algorithms. For more information about Figaro’s
reasoning algorithms, see Practical Probabilistic Programming or the Figaro Tutorial.

For this tutorial, we select the importance sampling algorithm, which we can use to determine the
probability that the model produces a certain result.

6 Load the portion of the Figaro package that contains the definition of the sampling algorithm.

To determine which package you need to import, open http://www.cra.com/figaro, scroll to the
Download Figaro section, and click the link to the documentation of the Figaro library interface.

You can review this javadoc or search for the a specific Figaro element to find the correct package.

After the first import statement in the HelloWorldTest.scala file, enter:

http://www.cra.com/figaro

Tutorial: Hello World Figaro Quick Start Guide

Figaro Version 5 8

import com.cra.figaro.algorithm.sampling._

7 Instantiate the sampling algorithm. Enter:

val sampleHelloWorld = Importance(1000, helloWorldElement)

We are creating an instance of an importance sampler with Figaro’s Importance algorithm using the
field sampleHelloWorld. This algorithm uses a simple forward sampling approach. The first
argument to this algorithm is the number of samples it will take. The second argument is the element in
the model that will be queried. When this algorithm is run, it will sample the helloWorldElement
1000 times.

Your file now looks like this:

import com.cra.figaro.language._
import com.cra.figaro.algorithm.sampling._

object HelloWorldTest{
 def main(args: Array[String]) {
 val helloWorldElement = Constant(“Hello world!”)
 val sampleHelloWorld = Importance(1000, helloWorldElement)
 }
}

Querying the model using a reasoning
algorithm
8 Add code that will start the algorithm when you run the program. Enter:

sampleHelloWorld.start()

9 Write a query on the algorithm for the probability that the model will output a certain string. For
example, enter:

sampleHelloWorld.probability(helloWorldElement, “Hello world!”)
sampleHelloWorld.probability(helloWorldElement, “Goodbye world!”)

These lines use the probability method of Figaro’s Importance algorithm to calculate the
probability of the helloWorldElement outputting the specified string after sampling it 1000 times.

10 Output the results. Edit the lines you created in the last step:

println(“Probability of Hello world:”)
println(sampleHelloWorld.probability(helloWorldElement, “Hello
world!”))
println(“Probability of Goodbye world:”)
println(sampleHelloWorld.probability(helloWorldElement, “Goodbye
world!”))

Your file now looks like this:

import com.cra.figaro.language._
import com.cra.figaro.algorithm.sampling._

object HelloWorldTest{
 def main(args: Array[String]){
 val helloWorldElement = Constant(“Hello world!”)
 val sampleHelloWorld = Importance(1000, helloWorldElement)

 sampleHelloWorld.start()

Tutorial: Hello World Figaro Quick Start Guide

Figaro Version 5 9

 println(“Probability of Hello world:”)
 println(sampleHelloWorld.probability(helloWorldElement, “Hello
 world!”))
 println(“Probability of Goodbye world:”)
 println(sampleHelloWorld.probability(helloWorldElement, “Goodbye
 world!”))
 }
}

Producing results from queries
11 Open a command prompt.

12 Change directory to the FigaroWork/FigaroWork directory. For example, enter:

cd c:\Program Files (x86)\sbt\FigaroWork

SBT requires that you run your source code from the top-level FigaroWork directory (the same
directory that contains the project, src, and target directories).

13 Enter the following to run your project:

sbt "runMain HelloWorldTest"

Figaro executes the program, running the reasoning algorithm and querying the model defined within
the program. Running the program instantiates an Importance sampler, which takes 1000 samples from
the model and saves each sample. Then it computes the probability of each string you queried within
that result set.

14 Your HelloWorldTest project should produce the following output:

[info] Running HelloWorldTest
Probability of Hello world:
1.0
Probability of Goodbye world:
0.0

That is, helloWorldElement produced the string “Hello world!” 1000 times and never
produced the string “Goodbye world!”

Modifying the model
15 Modify the model to be slightly more complex using Figaro’s Select element and

VariableElimination algorithm.

val helloWorldElement = Select(0.8->”Hello world”,0.2->”Goodbye
world”

This element produces a set of values with defined probabilities. Now, when the
helloWorldElemenet is queried, it produces the string “Hello world!” with a probability of
0.8, and produces the string “Goodbye world!” with a probability of 0.2.

The VariableElimination algorithm will provide an exact probability, instead of the
approximate probability provided by the Importance sampling algorithm.

Your file now looks like this (changes are shown in bold):

Tutorial: Hello World Figaro Quick Start Guide

Figaro Version 5 10

import com.cra.figaro.language._
import com.cra.figaro.algorithm.sampling._

import com.cra.figaro.algorithm.factored._

object HelloWorldTest{
 def main(args: Array[String]){
 val helloWorldElement = Select(0.8->”Hello world!”,0.2-
>”Goodbye world!”)
 val sampleHelloWorld = VariableElimination(helloWorldElement)

 sampleHelloWorld.start()

 println(“Probability of Hello world:”)
 println(sampleHelloWorld.probability(helloWorldElement, “Hello
 world!”))
 println(“Probability of Goodbye world:”)
 println(sampleHelloWorld.probability(helloWorldElement,
 “Goodbye world!”))
 }
}

If you cannot find this file, follow the instructions in Tutorial: Hello World.

16 Run your project:

sbt "runMain HelloWorldTest"

Figaro executes the program, running the reasoning algorithm and querying the model defined within
the program. Running the program instantiates an instance of the VariableElimination algorithm which
answers the query by marginalizing out non-query variables.

17 Your HelloWorldTest project should produce the following output:

[info] Running HelloWorldTest
Probability of Hello world:
0.8
Probability of Goodbye world:
0.2

Figaro Version 5 11

3 TUTORIAL: BURGLARY
EXAMPLE

This tutorial reviews a Bayesian network implemented with Figaro. This model is provided as part
of the Figaro download. It models the likelihood that a burglar set off a burglar alarm as opposed
to an earthquake. In this tutorial, you will:

 Create a Bayesian network to model the scenario.

 Create a variable elimination algorithm to measure probabilities.

 Query the model using your algorithm to determine whether the alarm was triggered by a
burglar.

 Explore other example projects provided in the Figaro download.

To successfully follow this tutorial, you must first follow the instructions in Installing the Simple
Build Tool and Downloading the FigaroWork project.

This tutorial includes the following topics:

 Downloading the Figaro examples

 Creating a Bayesian network model

 Creating a reasoning algorithm

 Starting the algorithm and using it to query the model

 Running the Burglary example

 Exploring additional examples

Tutorial: Burglary Example Figaro Quick Start Guide

Figaro Version 5 12

Downloading the Figaro examples
1 Download and extract the Figaro JAR. For instructions, see Downloading Figaro on page 4.

You can review the code of the examples by using a zip utility to open the
figaroexamples_<version>-sources.jar file. For a description of the examples, see
Exploring additional examples on page 15.

Creating a Bayesian network model
For this example, we want to model the following scenario: Your neighbor, John, is calling you. He usually
calls you when your burglar alarm is going off. Sometimes, the alarm goes off because of a burglar, and
sometimes an earthquake sets it off.

The Bayesian network for this scenario looks like this:

2 Create a BurglaryExample.scala file in the FigaroWork/src/main/scala directory.

If you cannot find this directory, follow the instructions in Installing the Simple Build Tool and
Downloading the FigaroWork project.

3 Begin by loading the Figaro example classes and loading the portion of the Figaro package that allows
you to use the VariableElimination algorithm to calculate conditional probabilities given evidence,
create models, and easily create conditional probability distributions. Enter:

import com.cra.figaro.algorithm.factored._
import com.cra.figaro.language._
import com.cra.figaro.library.compound._

4 Create an object.

object Burglary{
 def main(args: Array[String]) {
 }
}

5 Define the nodes of the Bayesian network.

val burglary = Flip(0.01)

val earthquake = Flip(0.0001)

Tutorial: Burglary Example Figaro Quick Start Guide

Figaro Version 5 13

val alarm = CPD(burglary, earthquake,
 (false, false) -> Flip(0.001),
 (false, true) -> Flip(0.1),
 (true, false) -> Flip(0.9),
 (true, true) -> Flip(0.99))

val johnCalls = CPD(alarm,

 false -> Flip(0.01),
 true -> Flip(0.7))

Here, we define the parent nodes, burglary and earthquake, using Figaro’s Flip element.
Burglary is a probabilistic element that is true with probability .01 and false with probability .99. (That
is, burglaries occur 1% of the time.) Earthquake is a probabilistic element that is true with probability
.0001 and false with probability .9999. (That is, earthquakes occur .01% of the time.)

Next, we define the child node, alarm. This node has a conditional probability distribution, defined by
Figaro’s CPD element, which describes its dependency on the values of its parents. For example, the
likelihood that the alarm will be triggered by only an earthquake is 10%, while the likelihood that it
will be triggered by only a burglary is 90%.The likelihood that it will go off in the absence of either
event is .1%, while if both events occur, the probability that the alarm will go off is 99%.

Finally, we define a child node of alarm. This node is called johnCalls. The conditional probability
distribution for this node tells us that if the alarm is not going off, the probability that John will call is
very low, and if the alarm is going off, he will probably call.

Your file now looks like this:
import com.cra.figaro.algorithm.factored._
import com.cra.figaro.language._
import com.cra.figaro.library.compound._

object Burglary {
 Universe.createNew()

 private val burglary = Flip(0.01)

 private val earthquake = Flip(0.0001)

 private val alarm = CPD(burglary, earthquake,
 (false, false) -> Flip(0.001),
 (false, true) -> Flip(0.1),
 (true, false) -> Flip(0.9),
 (true, true) -> Flip(0.99))

 private val johnCalls = CPD(alarm,
 false -> Flip(0.01),
 true -> Flip(0.7))

 def main(args: Array[String]) {
 }
}

Creating a reasoning algorithm
6 Post evidence. Enter:

Tutorial: Burglary Example Figaro Quick Start Guide

Figaro Version 5 14

johnCalls.observe(true)
val alg = VariableElimination(burglary, earthquake)

Given the evidence that John is calling, we calculate the likelihood that there is a burglary and the
likelihood that there is an earthquake using Figaro’s VariableElimination algorithm. This
algorithm calculates the conditional probability of the targets, given the evidence. It converts each
element into a factor, then applies variable elimination to all the factors.

Starting the algorithm and using it to query
the model
7 Start the algorithm. Enter:

alg.start()

8 Query the algorithm for the probability that the alarm will be triggered by a burglary. Enter:

alg.probability(burglary, true)

These lines use the probability method of Figaro’s VariableElimination algorithm to
instantiate the algorithm, run inference, and return the probability that the burglary node is in the true
state.

9 Output the results. Edit the lines you created in the last step:

println("Probability of burglary: " + alg.probability(burglary,
true))

10 Terminate the algorithm to free up the memory used for the results:

alg.kill

Your file now looks like this:
import com.cra.figaro.algorithm.factored._
import com.cra.figaro.language._
import com.cra.figaro.library.compound._

object Burglary {
 Universe.createNew()

 private val burglary = Flip(0.01)

 private val earthquake = Flip(0.0001)

 private val alarm = CPD(burglary, earthquake,
 (false, false) -> Flip(0.001),
 (false, true) -> Flip(0.1),
 (true, false) -> Flip(0.9),
 (true, true) -> Flip(0.99))

 private val johnCalls = CPD(alarm,
 false -> Flip(0.01),
 true -> Flip(0.7))

 def main(args: Array[String]) {
 johnCalls.observe(true)
 val alg = VariableElimination(burglary, earthquake)

Tutorial: Burglary Example Figaro Quick Start Guide

Figaro Version 5 15

 alg.start()
 println("Probability of burglary: " + alg.probability(burglary,
true))
 alg.kill
 }
}

Running the Burglary example
11 Enter the following to run the Burglary example:

sbt "runMain Burglary"

Figaro instantiates the initial state then calculates the exact probability of the target elements (burglary
and earthquake), given the evidence that John called.

12 Your Burglary project should produce the following output:

[info] Running Burglary
Probability of burglary: 0.3733781172643905

Exploring additional examples
We included a number of example models within the figaroexamples.jar file. Many of the
examples are described in detail in the Figaro Tutorial. They include:

 AnnealingSmokers – Models the likelihood that someone will smoke, based on their friends’ smoking
habits, using a simulated annealing algorithm.

 Burglary – Models the likelihood that a burglar alarm is due to a burglary using a Bayesian network.

 CarAndEngine – Models the speed of a car based on the power of its engine using a probabilistic
relational model (PRM).

 FairDice – Learns the fairness of each die rolled for a data set using Dirichlet parameters.

 Firms – Models firms bidding for a contract and the likelihood that one will be selected as the winner
using constraints.

 Hierarchy – Models vehicles and their attributes using a class hierarchy.

 LazyList – Models the likelihood that an infinite list of symbols contains a particular symbol using
lazy variable elimination.

 MultiDecision – Models the decision by an entrepreneur to found a company using a multi-decision
influence diagram and a Metropolis-Hastings decision algorithm.

 MultiValuedReferenceUncertainty – Models the sum over a container of integers using multi-valued
references and aggregates.

 MutableMovie – Models the quality of a movie based on the skill of its actors using a non-functional
style of programming, mutable variables, and Figaro collections.

 OpenUniverse – Models the attribution of observations to an unknown number of sources using a
Metropolis-Hastings algorithm.

 OpenUniverseLearning – Learns the existence and observation of aircraft using Beta parameters and an
Expectation-Maximization algorithm.

Tutorial: Burglary Example Figaro Quick Start Guide

Figaro Version 5 16

 SimpleLearning – Learns the parameters in a set of random data using Beta parameters and an
Expectation-Maximization algorithm.

 SimpleMovie – Models the likelihood of an actor receiving an award for their appearance in a movie
using a Metropolois-Hastings Markov chain Monte Carlo algorithm.

 Smokers – Models the likelihood that someone will smoke based on their friends’ smoking habits
using a Markov network/Markov random field.

 Sources – Models the distance between a point and its source using dependent universes.

 ValveReliability – Models the current state of a valve system using a dynamic Bayesian network and
the factor frontier algorithm.

To run the Figaro examples
Copy the figaroexamples.jar file into the FigaroWork/lib directory. (You may need to create
this directory.) Then, you can run any of the examples using the SBT runMain command.

Tutorial: Burglary Example Figaro Quick Start Guide

Figaro Version 5 17

	About This Guide
	Related documents
	Typographic conventions
	Feedback and technical support

	1 Getting Started
	Overview
	Installing the Simple Build Tool (SBT)
	Downloading the FigaroWork project
	Downloading Figaro

	2 Tutorial: Hello World
	Creating a model
	Instantiating a reasoning algorithm
	Querying the model using a reasoning algorithm
	Producing results from queries
	Modifying the model

	3 Tutorial: Burglary Example
	Downloading the Figaro examples
	Creating a Bayesian network model
	Creating a reasoning algorithm
	Starting the algorithm and using it to query the model
	Running the Burglary example
	Exploring additional examples

